复杂性将如何影响大数据部署

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

如今,大数据应用程序比常规应用程序复杂10倍,开发人员通常需要了解大量的技术,以使大数据能够正常工作。

大数据的应用仍然太难了。尽管有很多的炒作的成分,但大多数企业仍然努力从他们的数据中获得价值。而Dresner咨询服务公司得出结论:“尽管长时间的意识培养和炒作,大数据分析的实际部署目前并不广泛适用于大多数组织。”

这是人员的问题。尽管有说服力的数据,企业高管们往往宁愿忽略这些数据。但是,大数据复杂性的一大部分是因为所需要的软件。虽然Spark和其他更新的系统已经改善了轨迹,但大数据基础设施仍然太难了,这是杰西·安德森精明的一点。

实施起来困难

长期以来,人才一直是大数据采用的最大障碍之一。2015年Bain&Co.公司通过对高级IT主管调查发现,59%的受访者认为他们的公司缺乏对数据和业务有意义的能力。调查机构Gartner公司分析师尼克•荷德科特别指出,“到2018年,由于技能和集成的挑战,70%的Hadoop部署将无法满足成本节省和收入目标。”人员的技能很重要,换句话说,相关人才供不应求。

随着时间的推移,人员的技能差距将会减少,当然,但是了解平均Hadoop部署是不平凡的。安德森指出,大数据的复杂性归结为两个主要因素:“你需要掌握10到30种不同的技术,只是为了创建一个大数据解决方案。而采用分布式系统是比较简单的”。

问题是什么

安德森表示典型的移动应用程序与Hadoop支持的应用程序的复杂性,注意后者涉及“盒子”或组件的数量的两倍。然而,用简单的词语表达,“Hadoop解决方案的'HelloWorld'比其他域中到高级设置更复杂。

安德森说,人们面临复杂的困难,是需要了解涉及的广泛的系统。例如,人们可能需要知道10种技术来构建大数据应用程序,但这可能需要熟悉另外20种技术,只需知道在给定情况下使用哪种技术即可。否则,例如,你将如何知道使用MongoDB而不是Hbase?还是Cassandra?或neo4j?

此外,在分布式系统中运行有其复杂性,而大数据的技能短缺依然存在。

简单的出路

企业正在努力尽量减少在大数据构建中所固有的复杂性的一种方法是转向公共云。根据最近的Databricks对ApacheSpark用户的调查,Spark到公共云的部署在过去一年中增长了10%,达到了总体部署的61%。云计算代替了那些繁琐以及不灵活的内部部署基础设施,可以提供灵活性。

然而,它并不能消除所涉及的技术的复杂性。关于此或数据库或消息代理的相同选择仍然存在。这种选择,以及其中的复杂性,不会很快消失。像Cloudera和Hortonworks这样的公司已经尝试简化这些选择,将它们整合到堆栈中,但是它们仍然基本上提供需要被理解以便有用的工具。AmazonWebServices公司通过其Lambda服务进一步发展,这使得开发人员能够专注于编写应用程序代码,而AWS负责所有底层基础架构。

但下一步是完全为最终用户预先制作应用程序,这是华尔街分析师彼得·戈德马克所说的销售基础设施组件的更大的机会。用他的话来说,一个主要类别的“获奖者”是应用和分析供应商,它将基础技术的复杂性抽象为一个用户友好的前端。企业用户的可寻址的受众将比程序员的市场致力于核心技术。

这是市场需要去的地方,而且是快速的。人们几乎没有做过。对于每个能够掌握所有的相关的大数据技术公司,包括那些高端产业的企业,只是想只是希望重塑自己,需要有人使他们的数据更具可操作性,人们现在需要这类供应商出现。

原文发布时间为:2016年11月21日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
6月前
|
分布式计算 DataWorks MaxCompute
DataWorks中odps到容器部署starrocks的单表同步遇到写入问题
【1月更文挑战第6天】【1月更文挑战第29篇】DataWorks中odps到容器部署starrocks的单表同步遇到写入问题
85 3
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
62 2
|
3月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
237 3
|
1月前
|
SQL 分布式计算 大数据
大数据-168 Elasticsearch 单机云服务器部署运行 详细流程
大数据-168 Elasticsearch 单机云服务器部署运行 详细流程
52 2
|
1月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
82 0
|
5月前
|
分布式计算 运维 DataWorks
MaxCompute产品使用问题之数据如何导出到本地部署的CK
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
运维 监控 大数据
部署-Linux01,后端开发,运维开发,大数据开发,测试开发,后端软件,大数据系统,运维监控,测试程序,网页服务都要在Linux中进行部署
部署-Linux01,后端开发,运维开发,大数据开发,测试开发,后端软件,大数据系统,运维监控,测试程序,网页服务都要在Linux中进行部署
|
6月前
|
数据可视化 Linux Apache
CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问
CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问
|
6月前
|
分布式计算 Hadoop 大数据
大数据成长之路-- hadoop集群的部署(4)退役旧数据节点
大数据成长之路-- hadoop集群的部署(4)退役旧数据节点
92 0
|
6月前
|
分布式计算 Hadoop 大数据
大数据成长之路-- hadoop集群的部署(3)HDFS新增节点
大数据成长之路-- hadoop集群的部署(3)HDFS新增节点
165 0
下一篇
无影云桌面