中国信息通信研究院总工程师余晓晖:中国工业大数据产业发展及应用趋势

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

5月5日,“2017中国工业大数据大会·钱塘峰会”在杭州国际博览中心举办。本届峰会以“数据驱动创新 融合引领变革”为主题,围绕工业大数据展开分享与交流。中国信息通信研究院总工程师余晓晖,以“中国工业大数据产业发展及应用趋势暨中国首届工业大数据创新竞赛信息发布“为题探讨了自己的看法。

 中国信息通信研究院总工程师余晓晖:中国工业大数据产业发展及应用趋势

以下为嘉宾演讲实录:

尊敬的各位院士,各位嘉宾,各位专家,上午好!刚才是我们的视频材料,我们要组织工业的大数据竞赛。我先进行一下说明,再向大家汇报。

为了进一步探索工业大数据对工业改革的深远影响,会聚社会力量,构建工业大数据技术及应用生态,由工业和信息化部指导,中国信息通信研究院主办的“首届工业大数据创业竞赛”将于2017年6月隆重举办。这也是国内首次由政府指导,我们组织的工业大数据领域的全国性创新竞赛。

本届竞赛以“赋能,复制:构建工业大数据应用生态”为主题,以开放共享,协作共赢为原则,是要针对实际工业大数据应用场景,给予企业真实数据源,通过竞赛的方式开发出能够解决实际问题的分析算法模型和解决方案。在发掘专业技术人才的同时,助力解决工业应用问题,推进工业大数据的加速发展。

大赛将邀请行业带头人和权威专家作为答辩委员,经过两个月的角逐有初赛和复赛,选出优胜者,最后会有对优胜者颁发证书。为了这个大赛,我也代表中国信息通信研究院对各位领导、各位专家的大力支持表示衷心的感谢,对于各大型制造企业、物联网企业、高等院校的积极协助表示衷心的感谢,我也非常诚恳的邀请大家积极参加工业信息化大赛,共同推动它的成功。这是在演讲之前的发布,是我们在工信部指导下做的创新大赛。下面汇报《工业大数据产业发展与应用趋势》,我会压缩自己的演讲趋势。

(PPT图示)这是工业数据的增长,就不展开了。在四五年前,在推动工业发展的,大数据的优先应用领域没有工业,当时提出了互联网、通讯、医疗等等,没有把工业作为非常重要的领域。但经过三四年的发展之后,我们发现工业数据是大数据发展里非常有价值,也是数据量最大的部分,它会成为工业大数据发展的核心。

前面各位院士和专家已经提了关于工业数据应一般大数据的不同,包括多元的、异构的等等,但很重要的是如果讲大数据科学,在工业领域里,非常重要的不同点就是数据科学与行业经验的结合至关重要。也就是说,这里面不仅仅是对数据的存储、处理计算,更重要的是数据如何和数据的应用实践相结合,前面提到了数据的分析和建模非常重要。

工业工业大数据联盟里发布的工业架构的1.0版,在里面提到了三大闭环数据是核心,网络是基础,安全是保障。我们强调数据是核心,就意味着在数据驱动的数据化变革中,通过数据的采集应用,形成了闭环,在企业级的闭环和产业链、价值链能够把用户结合在一起的大闭环,这是三大智能闭环,促进数据驱动的工业变革。

在这种情况下,我们就形成了三大系统,决策控制系统通过工业数据实时采集、分析和智能决策,促进生产优化;迭代优化系统依托工业软件,为制造全国过程、全产业链和产品全生命周期自动流动建立规则体系;科学分析系统,通过工业生产和流程建立了工业的生产智能。

工业大数据应用贯穿于工业全领域、全产业链和全价值链,从社会的智能维护、生产过程优化、供应链协同优化、质量管理优化等等,但这一系列应用还处于比较初级的阶段,还有很多工作需要在时间中推进。回到我国,我们国家的特点以及行业工业大数据的情况,可以应用到很多行业。在这里面有大数据薄弱的三角区,在三角区里可以看到数据应用的复杂度和数据薄弱的复杂度,在设备级、车间级和工厂级等优化方面有很多应用,但能够把数据高级应用的部分还是有一定的差距。

关于实践中,有个产业化的工业大数据领域评选,王老师也会提到这个问题,他是这个联盟的主席,我们联盟了评选了八个,这里就不详细展开。这里面有四个部分关于大数据,侧重是如何建立数据模型以及对数据处理,这里面对数据的推理规则和推理模型,通过上面的推理和计算,反过来进行仿真优化。另一方面,从另一个角度看,还有四个案例,包括钢铁、能源、工程机电等等如何采集全方位数据,进行工业全方位权声明周期的优化,从设计、生产、工艺等等。从八个案例可以看出,中国工业大数据的实践里cover了很多领域,在各个方面都做了探索。

(PPT图示)这是工业数据联盟的测试床,和工业大数据有关的是智能感知、大数据平台和智能分析应用,上面提到了华为、海尔、三一重工等等,在数据应用的各个环节做了很多工作,在我们希望通过测试床对行业应用提供一些输出的能力和技术。我们信通院和工业产业联盟对工业大数据应用的现状评估做了调查,当然除了工业大数据应用之外,还有其他方面的调查。这里主要是介绍工业大数据的模型。

我们建立了一个模型,有七个应用,包括运营智能决策、产品生命周期优化、生产智能管理、供应链优化、网络化协同、能耗与安全管理优化、智能决策,目前我们对产业联盟做了评估,程度还比较高,我们的评估水平也比较高。大体上有27%的低于2星,就是处于初步阶段,30%的企业正在推动数据采集,31%的企业达到了4星,就是开始进行数据分析和价值挖掘能力,10%的企业在数据分析已经做到一定程度了。这些企业的样本量比较小,而且是工业里做得领比较好的企业。但可以看到工业大数据的应用成都差异比较大,而且总体上处于起步阶段。

从大数据的产业生态来说,我们进行了产业分析,这里面已经看到了工业企业、自动化企业、IT、互联网企业走做了很多事情,在中国,大数据生态里从板块上来说,基本上还是比较完整,但从发展水平和技术能力上还有很多差距,但也可以看到产业拼图正在注目形成。

这里面设计的东西很多,就不相信展开了,但提出一个有关的,大数据的载体是关于平台的问题。杨部长讲了工具里有平台,这是信通院和联通企业一起勾画的关于工业互联网模型的,我们想平台的核心就是大数据服务。这个平台分为四层,从边缘连接,把设备连接起来,到提供云基础设施,注重云的服务能力,上面是应用能力层。应而能力用层从数据层面有存储和共享,分析方面有工业数据分析、模型、开发工具,上面做的是工业微服务、运维开发和运维管理,形成个性化定制服务。这是我们理解的工业互联网平台,不一定每家走会做,但工业互联网平台里作为重要的载体,还是很重要。

在过去三到四年中,关于工业互联网平台或者工业大数据平台发展非常快,最有名的是GE的Predix,其实除此之外,还有西门子、FANUC,其实他们做的都是同样的事情,他们都是大数据工业连接到上层资源配置、优化配置的载体,这个载体是工业大数据的制高点,我们认为中国工业有这样的机遇,能够脱颖而出,推动中国的发展。

在这里面就会有人工智能的引入问题,在工业数据里,前面院士也提到了现在有很大的人工智能在应用领导是和数据结合在一起,我们分析如何考虑,在数据里很有可能人工智能深度学习和应用,可以在平台里率先做。在边缘层,也通过边缘层技术和人工智能优化放在一起。

我们有一些工作,包括快联盟合作的《工业大数据白皮书》,以及我们和联盟一起共同推动工业大数据的发展,刚才发布的大赛,也是如此!希望共同推动工业大数据的发展!以上就是我的介绍,谢谢大家!

原文发布时间为:2017年5月8日

本文作者:孙博

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
90 1
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
57 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
21天前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
82 2
ly~
|
1月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
272 2
ly~
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
108 2
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
3天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
41 7
|
3天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
13 2
|
16天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
58 1