大数据时代结构化存储云HBase技术架构及最佳实践

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文中,阿里云高级专家封神带来了主题演讲《大数据时代结构化存储云HBase技术架构及最佳实践》,介绍HBase的应用选择、实战案例、技术平台解读以及后续的规划。
在10年,阿里研究HBase,是为了解决阿里容量及并发的实际问题,按照数据库要求,阿里深入HBase技术,并致力于保障稳定性和性能,目前已经有10000台规模,数百个集群,大约1亿的QPS,服务整个集团的业务。17年,把这部分能力也开放给公有云客户。本文中,阿里云高级专家封神带来了主题演讲《大数据时代结构化存储云HBase技术架构及最佳实践》,介绍HBase的应用选择、实战案例、技术平台解读以及后续的规划。

为什么应用HBase

一般而言,传统关系型数据库面临着成本、容量、QPS、分析等多方面的问题:存储成本较高;无法满足TB、PB级别的数量存储需求;QPS无法满足较高的并发要求,性能不能横向扩展;数据隔离,从而不能满足分析类的需求。

通过关系型数据库MySQL,可以解决中小数据库存储需求;通过分库分表,能够解决一定容量及并发的需求,但是其实现复杂,需要业务感知;通过以HBase为代表的分布式数据库,可以支持高到千万的并发,满足海量数据的存储。

那么怎么解决传统数据库这些问题呢?HBase给出了相应的应对方法:

  • LSM-Tree:写吞吐高,离线导入效率高;
  • 存储无限扩容:计算存储分离,分布式存储可以无限扩容;
  • 自动分区:分区自动分裂,分区自动Merge;
  • Hadoop生态:Phoenix满足查询需求,Spark接HBase,可以满足分析类需求。

9b55e78e3c76de735a3f261831e1815f33dcf4a2

HBase除了可以满足业务较快增长的高吞吐以及大容量读取需求,还有其他传统关系型数据库和非关系型数据库所不具备的特性:比如松散表(不存数据,不占空间);实时更新、增量导入、多维删除;随机查询、范围查询。

此外,HBase还有许多其他特性:

  • LSM树:实时写入吞吐量大,增量导入隔离性强;
  • TTL:数据时效性,系统自动处理;
  • 多版本:数据的第三维度,高效删除方式;
  • 动态列:数据发散的利器;
  • 协处理器:满足数据高效处理;
  • SQL访问:二级索引;
  • 即时查询:操作性查询,准实时。

HBase的能力是完全可以线性扩展的,通过添加节点就可以线性增强计算存储能力。

javascript:void(0)

应用实战

HBase具有丰富的应用场景,凭借海量的存储能力和高吞吐能力,为各种应用场景提供支持,包括报表类、时序类、日志类、消息类、推荐类、风控类、轨迹类,行业包括电子商务、物联网/车联网、聊天软件、金融、广告商、新闻、电信等等。

HBase具有庞大的生态圈,支持实时数据分析、即时分析、多维分析、时序数据库等场景。

d68e9f9fc92df8f27ee5075205f73ed72425543f

在阿里内部,HBase的使用涉及日志、聊天、监控、订单、IOT、风控、搜索等。中国使用的公司还有京东、小米、腾讯、网易、360、知乎、中国人寿、电信......几乎所有的一定规模的公司。

实际案例——传感器监控类

在rowkey有一定的设计规则,业务系统会做一些优化,比如把多行压成一行等等。

a6759f15c4062cff4a051e5f0fe9db12fc2a0302

实际案例——单车/司机轨迹

轨迹类应用可以满足离线大规模的轨迹分析,满足用户、后端人员的实时查询。

83ccf45366c16eb5b1186ab9588435430c0de390

实际案例——双十一大屏

这是阿里内部非常具有代表性的场景。高吞吐、高并发、低延迟的访问需求下,对HBase应用提出了很高的要求。

47899cdbe5c112ae646d3c3c31e6686f3bddd665

实际案例——安全风控

5928010ccf9f8f88afa4e7421583b8169571e2e5

在金融的战场上,用户画像、风控一直也是核心之一,一般的数据也是存储在HBase。

实际案例——搜索

搜索是HBase最先解决的一个场景,目标是为了存储互联网,流式计算实时处理后再导入到搜索引擎。

ff528ba9e6547623aaad53a8dddbcb63cba57c9c

实际案例——分析类

629f1179da5d8c8e52285307bd116ede7980dd03

以上分享的场景都在阿里内部及云上的实际业务中得以使用,满足了高性能高存储量的需求。

下图展示了HBase在业务中所处的位置,以及整体数据流的流向。

7379cd40176e5d4b7d086453b4f06861d40c62a6

ApsaraDB for HBase平台解读

在构建过程中,HBase会面临的问题涉及:较为复杂的运维体系、安全体系、云环境、源代码有bug需要修复、数据可靠性无法保障、配置复杂、需要增加公网服务等功能、稳定性待提升等方面。ApsaraDB HBase平台能够针对性地完善这些因素,性能更佳,更加稳定可靠。

d4e0e66b326ce1247a818a3bbb1461fedec981ce

ApsaraDB HBase的基本架构图如下所示:

c1f6eeea775fb40d65e6b2e24817981792d5aa90

从架构层面来讲,不同层面会提供不同的服务。

  • 产品层、接入层、网络层:提供上云方案、安全服务、公网访问、监控指标报警、方案支持等一站的DBaas服务;
  • 中间件、HBase内核层:Apsaradb- HBase内核是基于社区 HBase1.1版本打造,目前在阿里集团内部有数千业务使用,万台机器的规模,在性能、稳定性、功能方案均有提升及改进,在历年双十一均有考验;
  • 存储层:HBase后续会基于云端本地实例及共享存储,极大降低成本;
  • 运维服务:实现运维自动化:15分钟内全自动部署集群,自动守护进程,可用性检测及报警,修改配置,扩容节点和磁盘,链路监控报警,指标可视化,自动升级内核等。

ApsaraDB HBase给用户承诺的保障有:数据可靠性;高性能;高可用,自动负截均衡,单节点故障时可秒级故障转移;生态完整,与Hadoop生态完美融合,支持其它组件复杂分析;易运维,全指标监控预警,在线扩容节点、磁盘及修改配置;强安全,支持网络白名单、VPC网络隔离、基于阿里云AK访问集群。

作为一款数据库类产品,ApsaraDB HBase与各个数据源间保持着非常通透的关系,方便数据导入导出。

0ad76556f4b87c213f56e6a18a15757f51bc27b8

HBase API在性能上可以成倍地提升,如下图所示。

a1be7e8723d0421fe33acce79b0573451fd00044
 
HBase SQL实现了全局二级索引:索引存储一致性同步、单列索引、索引异步构建,性能大幅度提升。

26f641029a3587b19e8f3a84d8e81770215bb811

近期规划

关于HBase的规划,阿里已经对外开放过HBase链路优化、集群同步、强一致性等技术分享,后续将会在公网访问、服务端一键迁移、共享存储、SQL、Replica等方面继续完善。

f6f89a7e0ae6d8c2b5777afa94497054872a0016

  • HBase公网访问&AK访问:实现在线共享环境,提供安全保障。
360d1d9b5da40e25b9f18baab627e7c63a1d9be9
  • 服务端一键迁移:这是团队目前正在研究的功能。

46805e229447bba44d86b32ecc51abb89fba86bd

  • 共享存储:下沉到存储层及降低存储成本。

6e977bdeba54fbad6d8fd50e7828b37e4c95c915

  • SQL:定位非事务、schema、二级索引、轻分析。
e3db1a3dbf70e1053f56932340acc593c750ac5e
  • Replica:在一个Region写,再在多个Region读写访问。目前应用较少,致力于使HBase同时支持CP&AP。
f1e3544b2611631fba10666b848d339f63ec6c34

HBase本身一直在发展之中,在大规模的结构化存储的场景中无疑是标准的产品,其支持的场景也在不断拓展。阿里云HBase团队也是致力于推广改进HBase及提供专业的服务。我们希望HBase发展越来越好。

  • HBase全网最佳学习资料汇总:https://yq.aliyun.com/articles/169085
  • 云HBase产品首页:https://www.aliyun.com/product/hbase
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 数据采集 弹性计算
Codota的存储架构通过多种方式保障数据安全
Codota的存储架构通过多种方式保障数据安全
31 4
|
2月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
17天前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
184 8
|
2月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
249 3
【赵渝强老师】基于大数据组件的平台架构
|
18天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
40 0
|
2月前
|
存储 缓存 弹性计算
Codota的服务器存储架构
Codota的服务器存储架构
31 5
|
2月前
|
存储 缓存 弹性计算
Codota的存储架构
Codota的存储架构
38 3
|
2月前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
40 4
|
2月前
|
存储 缓存 监控
【赵渝强老师】HBase的体系架构
本文介绍了HBase的体系架构,包括HMaster、RegionServer和ZooKeeper的主要功能。HMaster负责Region的分配和管理,RegionServer处理数据的读写操作,ZooKeeper维护集群状态并协调分布式系统的运行。文章还详细解释了Region、WAL预写日志、Block Cache读缓存和MemStore写缓存的作用。
113 0
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
457 7