算法训练-动态规划基础

简介:

WIKIOI-1220 数字三角形

题目描述
如图所示的数字三角形,从顶部出发,在每一结点可以选择向左走或得向右走,
一直走到底层,要求找出一条路径,使路径上的值最大。
       7
     3   8
   8   1   0
 2   7   4   4
输入描述 Input Description
第一行是数塔层数N(1<=N<=100)。

第二行起,按数塔图形,有一个或多个的整数,表示该层节点的值,共有N行。

输出描述 Output Description
输出最大值。

样例输入 Sample Input
5
13
11 8
12 7 26
6 14 15 8
12 7 13 24 11
样例输出 Sample Output
86

 

简单动态规划(以前好像做过了)

#include<stdio.h>
int max(int a,int b)
{return a>b?a:b;}
int a[200][200],dp[200][200];
int main()
{
    int i,j,n,m;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    {
       for(j=1;j<=i;j++)
       scanf("%d",&a[i][j]);
    }
    for(i=1;i<=n;i++) dp[n][i]=a[n][i];
    for(i=n-1;i>=1;i--)
    for(j=1;j<=i;j++)
    dp[i][j]=max(a[i][j]+dp[i+1][j],a[i][j]+dp[i+1][j+1]);
    printf("%d\n",dp[1][1]);
    return 0;
} 


 

相关文章
|
1月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
265 1
|
8月前
|
存储 算法 Java
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
282 4
算法系列之动态规划
|
9月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
231 5
|
8月前
|
算法 安全 调度
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
|
8月前
|
机器学习/深度学习 算法 测试技术
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
【动态规划篇】01 背包的逆袭:如何用算法装满你的 “财富背包”
|
12月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
520 2
动态规划算法学习三:0-1背包问题
|
11月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
214 2
|
11月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
12月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
217 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
12月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
438 0
动态规划算法学习二:最长公共子序列

热门文章

最新文章

下一篇
oss教程