Python并发编程之线程池/进程池

简介:

引言

Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

Executor和Future

concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。

Future这个概念相信有java和nodejs下编程经验的朋友肯定不陌生了,你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。关于在Python中进行异步IO可以阅读完本文之后参考我的Python并发编程之协程/异步IO

p.s: 如果你依然在坚守Python2.x,请先安装futures模块。

 
 
  1. pip install futures 

使用submit来操作线程池/进程池

我们先通过下面这段代码来了解一下线程池的概念

 
 
  1. # example1.py 
  2. from concurrent.futures import ThreadPoolExecutor 
  3. import time 
  4. def return_future_result(message): 
  5.     time.sleep(2) 
  6.     return message 
  7. pool = ThreadPoolExecutor(max_workers=2)  # 创建一个最大可容纳2个task的线程池 
  8. future1 = pool.submit(return_future_result, ("hello"))  # 往线程池里面加入一个task 
  9. future2 = pool.submit(return_future_result, ("world"))  # 往线程池里面加入一个task 
  10. print(future1.done())  # 判断task1是否结束 
  11. time.sleep(3) 
  12. print(future2.done())  # 判断task2是否结束 
  13. print(future1.result())  # 查看task1返回的结果 
  14. print(future2.result())  # 查看task2返回的结果 

我们根据运行结果来分析一下。我们使用submit方法来往线程池中加入一个task,submit返回一个Future对象,对于Future对象可以简单地理解为一个在未来完成的操作。在第一个print语句中很明显因为time.sleep(2)的原因我们的future1没有完成,因为我们使用time.sleep(3)暂停了主线程,所以到第二个print语句的时候我们线程池里的任务都已经全部结束。

 
 
  1. ziwenxie :: ~ » python example1.py 
  2. False 
  3. True 
  4. hello 
  5. world 
  6. # 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行 
  7. ziwenxie :: ~ » ps -eLf | grep python 
  8. ziwenxie      8361  7557  8361  3    3 19:45 pts/0    00:00:00 python example1.py 
  9. ziwenxie      8361  7557  8362  0    3 19:45 pts/0    00:00:00 python example1.py 
  10. ziwenxie      8361  7557  8363  0    3 19:45 pts/0    00:00:00 python example1.py 

上面的代码我们也可以改写为进程池形式,api和线程池如出一辙,我就不罗嗦了。

 
 
  1. # example2.py 
  2. from concurrent.futures import ProcessPoolExecutor 
  3. import time 
  4. def return_future_result(message): 
  5.     time.sleep(2) 
  6.     return message 
  7. pool = ProcessPoolExecutor(max_workers=2
  8. future1 = pool.submit(return_future_result, ("hello")) 
  9. future2 = pool.submit(return_future_result, ("world")) 
  10. print(future1.done()) 
  11. time.sleep(3) 
  12. print(future2.done()) 
  13. print(future1.result()) 
  14. print(future2.result()) 

下面是运行结果

 
 
  1. ziwenxie :: ~ » python example2.py 
  2. False 
  3. True 
  4. hello 
  5. world 
  6. ziwenxie :: ~ » ps -eLf | grep python 
  7. ziwenxie      8560  7557  8560  3    3 19:53 pts/0    00:00:00 python example2.py 
  8. ziwenxie      8560  7557  8563  0    3 19:53 pts/0    00:00:00 python example2.py 
  9. ziwenxie      8560  7557  8564  0    3 19:53 pts/0    00:00:00 python example2.py 
  10. ziwenxie      8561  8560  8561  0    1 19:53 pts/0    00:00:00 python example2.py 
  11. ziwenxie      8562  8560  8562  0    1 19:53 pts/0    00:00:00 python example2.py 

使用map/wait来操作线程池/进程池

除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似,下面我们通过两个例子来比较一下两者的区别。

使用submit操作回顾

 
 
  1. # example3.py 
  2. import concurrent.futures 
  3. import urllib.request 
  4. URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] 
  5. def load_url(url, timeout): 
  6.     with urllib.request.urlopen(url, timeouttimeout=timeout) as conn: 
  7.         return conn.read() 
  8. # We can use a with statement to ensure threads are cleaned up promptly 
  9. with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: 
  10.     # Start the load operations and mark each future with its URL 
  11.     future_to_url = {executor.submit(load_url, url, 60): url for url in URLS} 
  12.     for future in concurrent.futures.as_completed(future_to_url): 
  13.         url = future_to_url[future] 
  14.         try: 
  15.             data = future.result() 
  16.         except Exception as exc: 
  17.             print('%r generated an exception: %s' % (url, exc)) 
  18.         else: 
  19.             print('%r page is %d bytes' % (url, len(data))) 

从运行结果可以看出,as_completed不是按照URLS列表元素的顺序返回的

 
 
  1. ziwenxie :: ~ » python example3.py 
  2. 'http://example.com/' page is 1270 byte 
  3. 'https://api.github.com/' page is 2039 bytes 
  4. 'http://httpbin.org' page is 12150 bytes 

使用map

 
 
  1. # example4.py 
  2. import concurrent.futures 
  3. import urllib.request 
  4. URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] 
  5. def load_url(url): 
  6.     with urllib.request.urlopen(url, timeout=60) as conn: 
  7.         return conn.read() 
  8. # We can use a with statement to ensure threads are cleaned up promptly 
  9. with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: 
  10.     for url, data in zip(URLS, executor.map(load_url, URLS)): 
  11.         print('%r page is %d bytes' % (url, len(data))) 

从运行结果可以看出,map是按照URLS列表元素的顺序返回的,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。

 
 
  1. ziwenxie :: ~ » python example4.py 
  2. 'http://httpbin.org' page is 12150 bytes 
  3. 'http://example.com/' page is 1270 bytes 
  4. 'https://api.github.com/' page is 2039 bytes 

第三种选择wait

wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默认设置为ALL_COMPLETED。

我们通过下面这个例子来看一下三个参数的区别

 
 
  1. from concurrent.futures import ThreadPoolExecutor, wait, as_completed 
  2. from time import sleep 
  3. from random import randint 
  4. def return_after_random_secs(num): 
  5.     sleep(randint(1, 5)) 
  6.     return "Return of {}".format(num) 
  7. pool = ThreadPoolExecutor(5) 
  8. futures = [] 
  9. for x in range(5): 
  10.     futures.append(pool.submit(return_after_random_secs, x)) 
  11. print(wait(futures)) 
  12. # print(wait(futures, timeout=Nonereturn_when='FIRST_COMPLETED')) 

如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成。

ziwenxie :: ~ » python example5.py
DoneAndNotDoneFutures(done={
<Future at 0x7f0b06c9bc88 state=finished returned str>,
<Future at 0x7f0b06cbaa90 state=finished returned str>,
<Future at 0x7f0b06373898 state=finished returned str>,
<Future at 0x7f0b06352ba8 state=finished returned str>,
<Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())

如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。

 
 
  1. ziwenxie :: ~ » python example5.py 
  2. DoneAndNotDoneFutures(done={ 
  3. <Future at 0x7f84109edb00 state=finished returned str>, 
  4. <Future at 0x7f840e2e9320 state=finished returned str>, 
  5. <Future at 0x7f840f25ccc0 state=finished returned str>}, 
  6. not_done={<Future at 0x7f840e2e9ba8 state=running>, 
  7. <Future at 0x7f840e2e9940 state=running>}) 

思考题

写一个小程序对比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在执行效率上的差距,结合上面提到的Future思考为什么会造成这样的结果。


作者:ZiWenXie

来源:51CTO

相关文章
|
1月前
|
调度 开发者 Python
深入浅出操作系统:进程与线程的奥秘
在数字世界的底层,操作系统扮演着不可或缺的角色。它如同一位高效的管家,协调和控制着计算机硬件与软件资源。本文将拨开迷雾,深入探索操作系统中两个核心概念——进程与线程。我们将从它们的诞生谈起,逐步剖析它们的本质、区别以及如何影响我们日常使用的应用程序性能。通过简单的比喻,我们将理解这些看似抽象的概念,并学会如何在编程实践中高效利用进程与线程。准备好跟随我一起,揭开操作系统的神秘面纱,让我们的代码运行得更加流畅吧!
|
10天前
|
消息中间件 调度
如何区分进程、线程和协程?看这篇就够了!
本课程主要探讨操作系统中的进程、线程和协程的区别。进程是资源分配的基本单位,具有独立性和隔离性;线程是CPU调度的基本单位,轻量且共享资源,适合并发执行;协程更轻量,由程序自身调度,适合I/O密集型任务。通过学习这些概念,可以更好地理解和应用它们,以实现最优的性能和资源利用。
44 11
|
9天前
|
Java Linux 调度
硬核揭秘:线程与进程的底层原理,面试高分必备!
嘿,大家好!我是小米,29岁的技术爱好者。今天来聊聊线程和进程的区别。进程是操作系统中运行的程序实例,有独立内存空间;线程是进程内的最小执行单元,共享内存。创建进程开销大但更安全,线程轻量高效但易引发数据竞争。面试时可强调:进程是资源分配单位,线程是CPU调度单位。根据不同场景选择合适的并发模型,如高并发用线程池。希望这篇文章能帮你更好地理解并回答面试中的相关问题,祝你早日拿下心仪的offer!
26 6
|
21天前
|
数据采集 消息中间件 Java
python并发编程:什么是并发编程?python对并发编程有哪些支持?
并发编程能够显著提升程序的效率和响应速度。例如,网络爬虫通过并发下载将耗时从1小时缩短至20分钟;APP页面加载时间从3秒优化到200毫秒。Python支持多线程、多进程、异步I/O和协程等并发编程方式,适用于不同场景。线程通信方式包括共享变量、消息传递和同步机制,如Lock、Queue等。Python的并发编程特性使其在处理大规模数据和高并发访问时表现出色,成为许多领域的首选语言。
|
1月前
|
消息中间件 Unix Linux
【C语言】进程和线程详解
在现代操作系统中,进程和线程是实现并发执行的两种主要方式。理解它们的区别和各自的应用场景对于编写高效的并发程序至关重要。
70 6
|
1月前
|
调度 开发者
深入理解:进程与线程的本质差异
在操作系统和计算机编程领域,进程和线程是两个核心概念。它们在程序执行和资源管理中扮演着至关重要的角色。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
70 5
|
1月前
|
算法 调度 开发者
深入理解操作系统:进程与线程的管理
在数字世界的复杂编织中,操作系统如同一位精明的指挥家,协调着每一个音符的奏响。本篇文章将带领读者穿越操作系统的幕后,探索进程与线程管理的奥秘。从进程的诞生到线程的舞蹈,我们将一起见证这场微观世界的华丽变奏。通过深入浅出的解释和生动的比喻,本文旨在揭示操作系统如何高效地处理多任务,确保系统的稳定性和效率。让我们一起跟随代码的步伐,走进操作系统的内心世界。
|
1月前
|
调度 开发者
核心概念解析:进程与线程的对比分析
在操作系统和计算机编程领域,进程和线程是两个基本而核心的概念。它们是程序执行和资源管理的基础,但它们之间存在显著的差异。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
68 4
|
2月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
2月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
37 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等