大数据竞赛平台——Kaggle入门篇

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,第一部分简单介绍Kaggle,第二部分将展示解决一个竞赛项目的全过程。如有错误,请指正!

大数据竞赛平台——Kaggle入门篇

1、Kaggle简介

Kaggle是一个数据分析的竞赛平台,网址:https://www.kaggle.com/

企业或者研究者可以将数据、问题描述、期望的指标发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方

案,类似于KDD-CUP(国际知识发现和数据挖掘竞赛)。Kaggle上的参赛者将数据下载下来,分析数据,然后运用机

器学习、数据挖掘等知识,建立算法模型,解决问题得出结果,最后将结果提交,如果提交的结果符合指标要求并且在参赛者中排名第一,将获得比赛丰厚的奖金。更多内容可以参阅:大数据众包平台

下面我以图文的形式介绍Kaggle:

进入Kaggle网站:

大数据竞赛平台——Kaggle入门篇

这是当前正在火热进行的有奖比赛,有冠军杯形状的是“Featured”,译为“号召”,召集数据科学高手去参赛。下面那个灰色的有试剂瓶形状的是“Research”,奖金少一点。这两个类别的比赛是有奖竞赛,难度自然不小,作为入门者,应该先做练习赛:

大数据竞赛平台——Kaggle入门篇

左图的比赛是“101”,右图的是“Playground”,都是练习赛,适合入门。入门Kaggle最好的方法就是独立完成101和playground这两个级别的竞赛项目。本文的第二部分将选101中的“Digit Recognition”作为讲解。

点击进入赛题“Digit Recognition”:

大数据竞赛平台——Kaggle入门篇

这是一个识别数字0~9的练习赛,“Competition Details“是这个比赛的描述,说明参赛者需要解决的问题。”Get the Data“是数据下载,参赛者用这些数据来训练自己的模型,得出结果,数据一般都是以csv格式给出:

大数据竞赛平台——Kaggle入门篇

其中,train.csv就是训练样本,test.csv就是测试样本,由于这个是训练赛,所以还提供了两种解决方案,knn_benchmark.R和rf_benchmark.R,前者是用R语。言写的knn算法程序,后者是用R语言写的随机森林算法程序,它们的结果分别是knn_benchmark.csv和rf_benchmark.csv。关于csv格式文件,我前一篇文章有详述:【Python】csv模块的使用。

得出结果后,接下来就是提交结果”Make a submission“:

大数据竞赛平台——Kaggle入门篇

要求提交的文件是csv格式的,假如你将结果保存在result.csv,那么点击”Click or drop submission here“,选中result.csv文件上传即可,系统将测试你提交的结果的准确率,然后排名。

另外,除了“Competition Details“、”Get the Data“、”Make a submission“,侧边栏的”Home“、”Information“、”Forum”等,也提供了关于竞赛的一些相关信息,包括排名、规则、辅导……

【以上是第一部分,暂且写这么多,有补充的以后再更】

2、竞赛项目解题全过程

(1)知识准备

首先,想解决上面的题目,还是需要一点ML算法的基础的,另外就是要会用编程语言和相应的第三方库来实现算法,常用的有:

Python以及对应的库numpy、scipy、scikit-learn(实现了ML的一些算法,可以直接用)、theano(DeepLearning的算法包)。

R语言、weka

如果用到深度学习的算法,cuda、caffe也可以用。

总之,使用什么编程语言、什么平台、什么第三方库都无所谓,无论你用什么方法,Kaggle只需要你线上提交结果,线下你如何实现算法是没有限制的。

Ok,下面讲解题过程,以”Digit Recognition“为例,数字识别这个问题我之前写过两篇文章,分别用kNN算法和Logistic算法去实现,有完整的代码,有兴趣可以阅读:kNN算法实现数字识别、 Logistic回归实现数字识别

(2)Digit Recognition解题过程

下面我将采用kNN算法来解决Kaggle上的这道Digit Recognition训练题。上面提到,我之前用kNN算法实现过,这里我将直接copy之前的算法的核心代码,核心代码是关于kNN算法的主体实现,我不再赘述,我把重点放在处理数据上。

以下工程基于Python、numpy

获取数据

从”Get the Data“下载以下三个csv文件:

大数据竞赛平台——Kaggle入门篇

分析train.csv数据

train.csv是训练样本集,大小42001*785,第一行是文字描述,所以实际的样本数据大小是42000*785,其中第一列的每一个数字是它对应行的label,可以将第一列单独取出来,得到42000*1的向量trainLabel,剩下的就是42000*784的特征向量集trainData,所以从train.csv可以获取两个矩阵trainLabel、trainData。

下面给出代码,另外关于如何从csv文件中读取数据,参阅:csv模块的使用

大数据竞赛平台——Kaggle入门篇

这里还有两个函数需要说明一下,toInt()函数,是将字符串转换为整数,因为从csv文件读取出来的,是字符串类型的,比如‘253’,而我们接下来运算需要的是整数类型的,因此要转换,int(‘253’)=253。toInt()函数如下:

大数据竞赛平台——Kaggle入门篇

nomalizing()函数做的工作是归一化,因为train.csv里面提供的表示图像的数据是0~255的,为了简化运算,我们可以将其转化为二值图像,因此将所有非0的数字,即1~255都归一化为1。nomalizing()函数如下:

大数据竞赛平台——Kaggle入门篇

分析test.csv数据

test.csv里的数据大小是28001*784,第一行是文字描述,因此实际的测试数据样本是28000*784,与train.csv不同,没有label,28000*784即28000个测试样本,我们要做的工作就是为这28000个测试样本找出正确的label。所以从test.csv我们可以得到测试样本集testData,代码如下:

大数据竞赛平台——Kaggle入门篇

分析knn_benchmark.csv

前面已经提到,由于digit recognition是训练赛,所以这个文件是官方给出的参考结果,本来可以不理这个文件的,但是我下面为了对比自己的训练结果,所以也把knn_benchmark.csv这个文件读取出来,这个文件里的数据是28001*2,第一行是文字说明,可以去掉,第一列表示图片序号1~28000,第二列是图片对应的数字。从knn_benchmark.csv可以得到28000*1的测试结果矩阵testResult,代码:

大数据竞赛平台——Kaggle入门篇

到这里,数据分析和处理已经完成,我们获得的矩阵有:trainData、trainLabel、testData、testResult

算法设计

这里我们采用kNN算法来分类,核心代码:

大数据竞赛平台——Kaggle入门篇

关于这个函数,参考:kNN算法实现数字识别

简单说明一下,inX就是输入的单个样本,是一个特征向量。dataSet是训练样本,对应上面的trainData,labels对应trainLabel,k是knn算法选定的k,一般选择0~20之间的数字。这个函数将返回inX的label,即图片inX对应的数字。

对于测试集里28000个样本,调用28000次这个函数即可。

保存结果

kaggle上要求提交的文件格式是csv,上面我们得到了28000个测试样本的label,必须将其保存成csv格式文件才可以提交,关于csv,参考:【Python】csv模块的使用。

代码:

大数据竞赛平台——Kaggle入门篇

综合各函数

上面各个函数已经做完了所有需要做的工作,现在需要写一个函数将它们组合起来解决digit recognition这个题目。我们写一个handwritingClassTest函数,运行这个函数,就可以得到训练结果result.csv。

大数据竞赛平台——Kaggle入门篇

运行这个函数,可以得到result.csv文件:

大数据竞赛平台——Kaggle入门篇

2 0 9 9 3 7 0 3…….就是每个图片对应的数字。与参考结果knn_benchmark.csv比较一下:

大数据竞赛平台——Kaggle入门篇

28000个样本中有1004个与kknn_benchmark.csv中的不一样。错误率为3.5%,这个效果并不好,原因是我并未将所有训练样本都拿来训练,因为太花时间,我只取一半的训练样本来训练,即上面的结果对应的代码是:


 
 
  1. [python] view plain copyclassifierResult = classify(testData[i], trainData[0:20000], trainLabel[0:20000], 5) 

训练一半的样本,程序跑了将近70分钟(在个人PC上)。

提交结果

将result.csv整理成kknn_benchmark.csv那种格式,即加入第一行文字说明,加入第一列的图片序号,然后make a submission,结果准确率96.5%:

大数据竞赛平台——Kaggle入门篇


本文作者:wopon_

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
238 1
|
17天前
|
SQL 人工智能 自然语言处理
DataWorks年度发布:智能化湖仓一体数据开发与治理平台的演进
阿里云在过去15年中持续为268集团提供数据服务,积累了丰富的实践经验,并连续三年在IDC中国数据治理市场份额中排名第一。新一代智能数据开发平台DateWorks推出了全新的DateStudio IDE,支持湖仓一体化开发,新增Flink计算引擎和全面适配locs,优化工作流程系统和数据目录管理。同时,阿里云正式推出个人开发环境模式和个人Notebook,提升开发者体验和效率。此外,DateWorks Copilot通过自然语言生成SQL、代码补全等功能,显著提升了数据开发与分析的效率,已累计帮助开发者生成超过3200万行代码。
|
6月前
|
SQL 存储 分布式计算
ODPS开发大全:入门篇(3)
ODPS开发大全:入门篇
275 19
|
6月前
|
SQL 存储 分布式计算
ODPS开发大全:入门篇(1)
ODPS开发大全:入门篇
578 14
|
2月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
304 3
【赵渝强老师】基于大数据组件的平台架构
|
3月前
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
126 1
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
107 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
5月前
|
分布式计算 资源调度 Hadoop
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
|
5月前
|
搜索推荐 OLAP 流计算
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
70 1
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
86 2