加州伯克利新算法:打破AI黑箱 可按人类思维回溯推理 | 重大突破

简介:

加州伯克利新算法:打破AI黑箱 可按人类思维回溯推理 | 重大突破

在某些情况下,我们常常无法对自己的行为作出合理的解释。例如一场说走就走的旅行,一次奋不顾身的爱情,事后人们常常无法相信当时的自己究竟为什么会做出那样的选择。但这种情况毕竟是少数,大多数时候,我们都具有自我解释和自我认知的能力,而这一点也是人类与机器人(或者说人工智能)最大的区别之一。

一般我们所说的人工智能,其实说到底就是由一段程序代码组成的复杂运算系统,这个系统能够根据输入数据得出一个运算结果,而这个结果的外在体现就是人工智能。在通常情况下,我们只能看到输入的数据和最终的运算结果,至于中间的运算过程究竟怎样,则一概不知。

这会带来两方面的缺陷:一是当整个系统出现问题时,我们无法迅速准确地对问题进行定位并实施改进;二是当人工智能得到一个近乎完美的运算结果时,我们无法回溯整个过程,并从中汲取经验(雷锋网注:也就是我们常说的“AI决策黑箱”)。

现在有一个正在迅速成长的研究领域,正在试图改变这一现状。

加州伯克利新算法:打破AI黑箱 可按人类思维回溯推理 | 重大突破

拿图像识别的场景来说。通常的做法是:我们会将一系列的图像数据输入系统,然后系统会以既定的模式识别出图像中的物体,并予以标记。在现实场景中,每张图片包含的信息都非常复杂,这使得一旦出现标记错误,我们将很难回溯整个标记流程,从而也很难定位并解决问题。

日前来自加州伯克利大学和Max Planck信息研究所的科学家们发明了一种全新的图像识别算法,可以解决这一难题。该算法除了能够按照一般的流程对图像信息进行识别并加以标记之外,还能对产生这一标记的原始数据进行记录,并将这一原始数据“翻译”成人类可以理解的语言备份下来,方便研究者们回溯和检查。

根据团队发表的论文,目前这一算法还仅限于识别图像里的人物动作信息(例如这个人是在打棒球还是骑自行车),而且需要基于两种不同的数据集合的支持。第一个集合是关于图像信息本身的,包括图像、图像的初步描述、以及图像的进一步说明。例如一个打棒球的照片,描述信息可以是“图中有一个棒球棍,以及一个人握着它”,说明信息可以是“这个人正在握着棒子挥舞”。第二个集合是关于图像信息解释的,其中包括三个图像的相关问题,而且针对每个问题要给出10种可能的答案。例如问:“这个人是在打棒球么?”一种回答可以是:“不是,因为图中没有棒球棍。”

正是基于上述两种数据集合的支持,当某个利用了这种算法的神经网络系统被问到为什么将图片描述为“打棒球”时,它就可以追溯到最原始的定位信息,并将之描述出来:例如它检测到图中出现了一个棒球棍,以及一个人在握着这根棒球棍挥舞,因此得出结论这是一个打棒球的照片。研究者们称之为“标记并解释”系统,因为它不但能描述一张图片的内容,还能指出为什么得出了这样的结论。

微软首席研究员Kate Crawford在评论中指出:工程师们已经开发出了能够自动识别不同种类的猫、狗或者其他内容的深度学习系统。虽然这些系统的表现随着研究的深入正在变得越来越好,但人们始终无法搞清楚背后的逻辑,即为什么系统会得到这个结论。

Kate Crawford的观点触及了机器学习领域的一个核心问题:当一个算法进行自我学习时,它只能根据研究者输入的数据(可以是文本,也可以是图像或者视频等),提取出关键的信息,并将这些信息按照只有机器自己才能理解的方式加以归类和整理,这一过程完全不需要人类的直接参与,人类也无法加以观察和控制。

波士顿大学计算机学科的教授Kate Saenko表示:实际上并没有人能够设计一个深度神经网络。人们只是设计了这个系统的算法,并提供了相应的数据集合,剩下的都由系统自主完成。

所以,这就是来自加州伯克利大学和Max Planck信息研究所这一最新算法的重要意义:它能将机器内部的逻辑链条翻译出来展示给人类,而不是简单的仅仅给出一个结论。

欧洲计算机视觉联会的主席,Facebook访问学者Devi Parikh表示:这一算法的难点不在于解释一个结论本身,而是如何以人类能理解的方式表述出来。因为如果你看到过机器内部的运算流程,就会发现其中所有的参数和中间变量都是以数字的形式出现的,有些数字甚至长达数百上千位。因此,从内部的运算逻辑中找到一个结论的源头数据或许并不困难,真正困难的是如何将这一长串数字翻译成人类能够理解的语言。

虽然目前来看,来自加州伯克利大学和Max Planck信息研究所的这一最新研究成果还非常具有局限性(例如只能识别人类的动作)。但更重要的是,它为我们指明了一种未来可能出现的现实场景:不但能够从机器那里得到一件事情的具体决策,还能像跟朋友聊天一样询问它得到这一结论的原因。未来,随着我们赋予机器越来越关键信息的决策能力(例如自动驾驶),这种能够自我解释的机制也将变得越来越重要。

当然,如果像此前的报道那样,机器有一天也终于学会了骗人,那就是另一个故事了。

来源:Quartz

本文作者:恒亮@雷锋网

本文责编:岑峰@雷锋网(公众号:雷锋网)


【兼职召集令!】

如果你对未来充满憧憬,喜欢探索改变世界的科技进展,look no further!

我们需要这样的你:

精通英语,对技术与产品感兴趣,关注人工智能学术动态的萝莉&萌妹子&技术宅;

文字不求妙笔生花,但希望通俗易懂;

在这里,你会收获:

一群来自天南地北、志同道合的小伙伴;

前沿学术科技动态,每天为自己充充电;

更高的生活品质,翻翻文章就能挣到零花钱;

有意向的小伙伴们把个人介绍/简历发至 guoyixin@leiphone.com,如有作品,欢迎一并附上。


本文作者:恒亮


本文转自雷锋网禁止二次转载,原文链接

相关文章
|
25天前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
406 125
|
12天前
|
机器学习/深度学习 算法 C++
【DFS/回溯算法】2016年蓝桥杯真题之路径之谜详解
题目要求根据城堡北墙和西墙箭靶上的箭数,推断骑士从西北角到东南角的唯一路径。每步移动时向正北和正西各射一箭,同一格不重复经过。通过DFS回溯模拟“拔箭”过程,验证路径合法性。已知箭数约束路径唯一,最终按编号输出行走顺序。
|
3月前
|
消息中间件 人工智能 资源调度
云上AI推理平台全掌握 (5):大模型异步推理服务
针对大模型推理服务中“高计算量、长时延”场景下同步推理的弊端,阿里云人工智能平台 PAI 推出了一套基于独立的队列服务异步推理框架,解决了异步推理的负载均衡、实例异常时任务重分配等问题,确保请求不丢失、实例不过载。
|
2月前
|
算法
回溯算法的基本思想
本节介绍回溯算法,通过图1中从A到K的路径查找示例,说明其与穷举法的异同。回溯算法通过“回退”机制高效试探各种路径,适用于决策、优化和枚举问题。
53 0
|
3月前
|
机器学习/深度学习 人工智能 开发者
如何让AI从简单的记忆型模型进化为具备深度推理能力的‘学霸’?—— 解析提升AI推理能力的四大核心技术
本文由AI专家三桥君探讨AI推理能力的四大核心技术:推理时间扩展、纯强化学习、标注数据+强化学习、知识蒸馏。通过对比记忆型与推理型AI的差异,分析显式与隐式推理的特点,揭示AI从"记忆答案"到"深度思考"的进化路径。三桥君指出,这些技术使AI在数学证明、编程等复杂任务中表现显著提升,但也面临算力成本与输出速度的平衡挑战。三桥君认为AI推理能力的发展将为科研、教育等领域带来革新,推动AI成为人类的"思考伙伴"。
196 0
|
3月前
|
人工智能 缓存 资源调度
云上AI推理平台全掌握 (4):大模型分发加速
为应对大模型服务突发流量场景,阿里云人工智能平台 PAI 推理服务 PAI-EAS 提供本地目录内存缓存(Memory Cache)的大模型分发加速功能,有效解决大量请求接入情况下的推理延迟。PAI-EAS 大模型分发加速功能,零代码即可轻松完成配置。
|
3天前
|
存储 人工智能 安全
《Confidential MaaS 技术指南》发布,从 0 到 1 构建可验证 AI 推理环境
Confidential MaaS 将从前沿探索逐步成为 AI 服务的安全标准配置。
|
26天前
|
存储 人工智能 NoSQL
用Context Offloading解决AI Agent上下文污染,提升推理准确性
上下文工程是将AI所需信息(如指令、数据、工具等)动态整合到模型输入中,以提升其表现。本文探讨了“上下文污染”问题,并提出“上下文卸载”策略,通过LangGraph实现,有效缓解长文本处理中的信息干扰与模型幻觉,提升AI代理的决策准确性与稳定性。
110 2
用Context Offloading解决AI Agent上下文污染,提升推理准确性
|
1月前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
138 4

热门文章

最新文章