AI算法分析,智慧城管AI智能识别系统源码

简介: AI视频分析技术应用于智慧城管系统,通过监控摄像头实时识别违法行为,如违规摆摊、垃圾、违章停车等,实现非现场执法和预警。算法平台检测街面秩序(出店、游商、机动车、占道)和市容环境(垃圾、晾晒、垃圾桶、路面不洁、漂浮物、乱堆物料),助力及时处理问题,提升城市管理效率。

AI视频分析,顾名思义就是指利用人工智能技术对视频数据进行分析和处理的过程。通过计算机视觉和深度学习等技术,能自动地从视频数据中提取有用的信息、模式与结构,并生成对视频内容的理解和推理。

智慧城管AI智能识别系统基于AI视频智能分析技术,通过街道已有的监控摄像头,对视频中的违法行为进行实时分析上报,系统可以实现违规摆摊检测、街道垃圾监测、违章停车识别、违规广告、出店经营检测、公共设施破坏、游摊小贩识别等违规识别。将城市街道人员违规摆摊占道经营游摊小贩等分析结果实时传送平台,智慧城管AI智能识别系统通过AI视觉分析技术,实现“非现场”执法,主动识别预警。实现监管实时性解决无法达到"第一时间发现问题、解决问题”的传统难题。
智能分析.png

算法分析

基于视频监控设备、智能报警设备的功能,利用AI算法平台,实时检测道路人流量、违法违规行为,及时上报、告警,便于工作人员及时处理。具体包括:

街面秩序:

1、出店:街面商铺有桌椅板凳等占用街面道路行为的物品出现,超出指定时间在一个区域不移动的识别;

2、游商:非经营区域出现违规摆摊等行为识别,超出指定时间在一个区域不移动的识别;

3、机动车:在禁停区域出现机动车停放行为,超出指定时间,对车牌进行提取;

4、占道:城市街道有占道经营行为的物品出现,超出指定时间在一个区域不移动的识别。

视频智能分析.png
事案件分析 1.png

市容环境:

1、暴露垃圾:检测图像中垃圾物的识别;

2、晾晒:检测图像中吊挂、晾晒衣物、床单、被罩等识别;

3、垃圾桶:检测图像中垃圾桶周围、或垃圾桶上有垃圾堆积识别;

4、路面不洁:检测图像中路面有瓶子、纸团、袋子等垃圾零散丢落的识别;

5、漂浮物:检测图像中河面上出现垃圾、水植等漂浮物的识别;

6、乱堆物料:检测图像中有纸板箱、板件等乱堆放的识别。

相关文章
|
1天前
|
人工智能 边缘计算 安全
边缘计算与AI的融合:未来智能系统的关键
【5月更文挑战第24天】随着人工智能(AI)和物联网(IoT)技术的迅猛发展,数据的产生和处理需求呈指数级增长。边缘计算作为一种新兴的分布式计算范式,旨在通过在数据生成的源头即边缘设备上进行数据处理,来降低延迟、提高效率并保护隐私。本文探讨了边缘计算与AI技术结合的必要性,分析了其在实现智能化系统方面的优势,并讨论了在融合过程中面临的挑战及潜在的解决方案。
|
2天前
|
算法 搜索推荐 Java
Java数据结构 -- 常见算法分析(查找算法、排序算法)精解详解!!!
Java数据结构 -- 常见算法分析(查找算法、排序算法)精解详解!!!
6 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来:AI驱动的自适应学习系统
【5月更文挑战第22天】 随着人工智能技术的迅猛发展,教育领域正在经历一场由数据驱动的革新。本文将探讨AI技术在构建自适应学习系统中的关键作用,分析其如何通过个性化教学方案提高学习效率,并预测未来发展趋势。我们将深入研究机器学习算法如何识别学习者的需求,实时调整教学内容和难度,以及AI如何帮助教师和学生在教育过程中实现更好的互动和反馈。
25 0
|
4天前
|
搜索推荐 算法 程序员
常见排序算法及其稳定性分析
常见排序算法及其稳定性分析
|
5天前
|
存储 算法 搜索推荐
【大数据分析与挖掘技术】Mahout推荐算法
【大数据分析与挖掘技术】Mahout推荐算法
11 0
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来:AI在持续学习系统中的创新应用
【5月更文挑战第21天】 随着人工智能(AI)技术的不断进步,机器学习模型正变得更加复杂和高效。然而,这些模型往往需要大量的数据和计算资源来训练,并且一旦部署,就很难适应新的数据或环境。为了解决这个问题,研究人员正在开发新的AI技术,使得机器能够进行持续学习。本文将探讨这种新兴的AI技术,并讨论其在各种领域的应用潜力。
|
5天前
|
机器学习/深度学习 传感器 人工智能
构建未来:AI驱动的自适应交通管理系统
【5月更文挑战第21天】 在本文中,我们将探讨一个由人工智能(AI)技术驱动的自适应交通管理系统的架构和实现。该系统利用机器学习算法实时分析交通数据,预测并优化交通流,从而减少拥堵,提高道路使用效率。通过与传统交通管理方法的比较,我们展示了AI技术如何提升城市交通管理的智能化水平,以及这些技术对环境、经济和社会的潜在积极影响。
13 3
|
5天前
|
机器学习/深度学习 人工智能 算法
构建未来:AI在持续学习系统中的进化
【5月更文挑战第20天】 随着人工智能(AI)技术的迅猛发展,机器学习模型正变得越来越复杂。然而,真正的智能不仅仅在于处理大量数据和解决特定问题,而在于不断学习和适应新环境。本文将探讨AI如何通过持续学习系统进化,以实现更加智能化的未来。我们将分析最新的研究进展,包括神经网络的自适应调整、增强学习的新策略以及元学习框架的开发。通过这些技术,AI能够更好地理解复杂的模式,并在不断变化的环境中保持其性能。文章还将讨论实施这些系统所面临的挑战,以及可能的解决方案。
10 0
|
6天前
|
机器学习/深度学习 人工智能 自动驾驶
构建未来:AI技术在智能交通系统中的应用
【5月更文挑战第20天】 随着人工智能技术的飞速进步,其在现代交通系统中的应用日益广泛,从智能导航到自动车辆调度,AI正逐步改变我们的出行方式和交通管理。本文深入探讨了AI技术在智能交通系统中的多种应用,分析了其提升交通效率、增强安全性及减少环境影响的潜在能力。同时,讨论了实施这些技术所面临的挑战和未来的发展方向,为读者提供了一个关于AI如何塑造未来交通网络的全面视角。
|
6天前
|
机器学习/深度学习 人工智能 运维
构建高效自动化运维系统:DevOps与AI的融合
【5月更文挑战第19天】 在数字化转型的浪潮中,企业IT运维面临着日益复杂的挑战。传统的手动运维方式已经无法满足快速迭代和高可靠性的需求。本文探讨了如何通过结合DevOps理念和人工智能(AI)技术,构建一个高效的自动化运维系统。文章首先回顾了DevOps的核心原则及其在自动化运维中的应用,接着分析了AI如何增强故障预测、智能决策和自动化流程的能力。最后,提出了一个综合DevOps与AI技术的自动化运维框架,并讨论了其在实际部署中的优势和潜在挑战。