AI算法分析,智慧城管AI智能识别系统源码

简介: AI视频分析技术应用于智慧城管系统,通过监控摄像头实时识别违法行为,如违规摆摊、垃圾、违章停车等,实现非现场执法和预警。算法平台检测街面秩序(出店、游商、机动车、占道)和市容环境(垃圾、晾晒、垃圾桶、路面不洁、漂浮物、乱堆物料),助力及时处理问题,提升城市管理效率。

AI视频分析,顾名思义就是指利用人工智能技术对视频数据进行分析和处理的过程。通过计算机视觉和深度学习等技术,能自动地从视频数据中提取有用的信息、模式与结构,并生成对视频内容的理解和推理。

智慧城管AI智能识别系统基于AI视频智能分析技术,通过街道已有的监控摄像头,对视频中的违法行为进行实时分析上报,系统可以实现违规摆摊检测、街道垃圾监测、违章停车识别、违规广告、出店经营检测、公共设施破坏、游摊小贩识别等违规识别。将城市街道人员违规摆摊占道经营游摊小贩等分析结果实时传送平台,智慧城管AI智能识别系统通过AI视觉分析技术,实现“非现场”执法,主动识别预警。实现监管实时性解决无法达到"第一时间发现问题、解决问题”的传统难题。
智能分析.png

算法分析

基于视频监控设备、智能报警设备的功能,利用AI算法平台,实时检测道路人流量、违法违规行为,及时上报、告警,便于工作人员及时处理。具体包括:

街面秩序:

1、出店:街面商铺有桌椅板凳等占用街面道路行为的物品出现,超出指定时间在一个区域不移动的识别;

2、游商:非经营区域出现违规摆摊等行为识别,超出指定时间在一个区域不移动的识别;

3、机动车:在禁停区域出现机动车停放行为,超出指定时间,对车牌进行提取;

4、占道:城市街道有占道经营行为的物品出现,超出指定时间在一个区域不移动的识别。

视频智能分析.png
事案件分析 1.png

市容环境:

1、暴露垃圾:检测图像中垃圾物的识别;

2、晾晒:检测图像中吊挂、晾晒衣物、床单、被罩等识别;

3、垃圾桶:检测图像中垃圾桶周围、或垃圾桶上有垃圾堆积识别;

4、路面不洁:检测图像中路面有瓶子、纸团、袋子等垃圾零散丢落的识别;

5、漂浮物:检测图像中河面上出现垃圾、水植等漂浮物的识别;

6、乱堆物料:检测图像中有纸板箱、板件等乱堆放的识别。

相关文章
|
16天前
|
传感器 数据采集 人工智能
AI是如何收集体育数据的?从摄像头到算法,揭秘赛场背后的“数字间谍网“!
⚽ 你是否好奇:AI如何知道哈兰德每秒跑多快?教练的平板为何比裁判还清楚谁偷懒?本文揭秘AI收集体育数据的“黑科技”:视觉追踪、传感器网络、数据清洗与高阶分析。从高速摄像机捕捉梅西肌肉抖动,到GPS背心记录姆巴佩冲刺速度;从表情识别判断装伤,到量子计算模拟战术可能,AI正让体育更透明、精准。未来已来,2030年世界杯或将实现AI替代球探、裁判甚至教练!你认为AI数据收集算侵犯隐私吗?最想统计哪些奇葩指标?留言互动吧!
|
20天前
|
存储 人工智能 缓存
tauri2.0+vite6接入deepseek-v3电脑端ai流式多轮聊天对话系统
原创重磅新作tauri2.0+vite6+deepseek-v3+arco-design实战客户端AI流式聊天对话系统。整合 Tauri2.x 接入 DeepSeek-V3 大模型。支持多窗口浅色+暗黑主题、代码高亮、本地会话缓存。
79 5
|
22天前
|
机器学习/深度学习 人工智能 运维
探讨AI数字人软件系统的开发与部署策略
随着科技发展,人工智能成为经济转型的关键驱动力,AI数字人软件系统在各行业广泛应用。本文探讨其开发与部署策略,助力企业和开发者参考。开发策略包括需求分析、技术选型、模块化设计、数据驱动及安全性保障;部署策略涵盖硬件环境、软件配置、分布式与云端部署以及运维保障,推动系统智能化与稳定性提升。
|
26天前
|
人工智能 运维 Prometheus
“服务器罢工前的预言术”:用AI预测系统状态真香指南
“服务器罢工前的预言术”:用AI预测系统状态真香指南
38 4
|
28天前
|
数据采集 传感器 人工智能
船厂复杂环境下的多模态AI安防系统技术实践
本方案针对船厂复杂工业场景,设计了五层分布式AI安防系统架构:数据采集层(海康摄像头+气体传感器)、预处理层(动态光照补偿)、特征引擎层(YOLOv8s检测+ESRGAN增强+ByteTrack跟踪)和规则决策层。同时,实现交通违规检测、龙门吊防撞及人员滞留监测等关键模块,并通过两阶段小目标检测、工业干扰优化与边缘计算加速解决工程挑战。系统采用边缘-中心协同架构,支持REST API与MQTT/ZMQ通信,技术验证数据显示其准确率高达92.4%,障碍物识别延迟平均仅850ms。
51 1
船厂复杂环境下的多模态AI安防系统技术实践
|
1月前
|
人工智能 前端开发 搜索推荐
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
本文介绍了使用LangGraph和LangSmith构建企业级多智能体AI系统的完整流程。从简单的ReAct智能体开始,逐步扩展至包含身份验证、人工干预、长期内存管理和性能评估的复杂架构。文章详细讲解了状态管理、工具集成、条件流程控制等关键技术,并对比了监督者架构与群体架构的优劣。通过系统化的方法,展示了如何构建可靠、可扩展的AI系统,为现代AI应用开发提供了坚实基础。*作者:Fareed Khan*
108 0
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
|
2月前
|
数据采集 人工智能 算法
面向AI应用开发的开源能源管理系统
人工智能在能源管理中发挥关键作用,通过优化资源分配、智能消费管理、精准监测预测以及改善客户体验等多方面推动行业转型。MyEMS作为重要工具,基于Python语言集成AI技术,实现数据采集处理、负荷预测、能源优化控制、故障诊断预警及可视化展示等功能,提供全面智能化解决方案,助力可持续发展与能源效率提升。
64 0
|
17天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。

热门文章

最新文章