高性能可定制化分布式发号器

简介:

玄靖

刘兵,花名玄靖,目前供职于阿里巴巴,开源技术爱好者,高性能Redis中间件NRedis-Proxy作者,目前研究方向为java中间件,微服务等技术。


(一) 什么是分布式发号器

    说起分布式发号器的前生今世,咱们应该感恩这个时代;随着互联网在中国越来越普及化,单机系统或者一个小系统已经无法满足需要,随着用户逐渐增多,数据量越来越大,单个应用或者单个数据库已经无法满足需求,在应用以至于微服务来临,在数据库存储方面分库分表来临,可以解决问题;但是新的问题产生,怎么样做到多个应用可以有唯一主键或者序号,防止数据重复呢?分布式发号器正好为解决这个问题,可以让大家无须为这个问题烦恼了,这是本人写这篇文章初衷

(二) 分布式发号器优势

1) 解决分库分表中唯一序号的问题

2) 解决分布式应用或者微服务框架中唯一序号的问题

3) 提供可定制化生成规则,根据业务需求可自定义扩展

4) 性能高效且系统简单稳定

5) 系统可任意扩展

(三) 分布式发号器架构图

(四) 分布式发号器流程图

1) 分布式发号器重要字段



2) concurrentValue不存在的流程图


3) concurrentValue存在的流程图

(五) 目前存在分布式发号器解决方案

1) UUID

 Universally Unique IDentifier(UUID),有着正儿八经的RFC规范,是一个128bit的数字,也可以表现为32个16进制的字符(每个字符0-F的字符代表4bit),中间用"-"分割。

时间戳+UUID版本号: 分三段占16个字符(60bit+4bit)

Clock Sequence号与保留字段:占4个字符(13bit+3bit)

节点标识:占12个字符(48bit)

2) Hibernate

Hibernate的CustomVersionOneStrategy.java,解决了之前version 1的两个问题

时间戳(6bytes, 48bit):毫秒级别的,从1970年算起,能撑8925年....

顺序号(2bytes, 16bit, 最大值65535): 没有时间戳过了一毫秒要归零的事,各搞各的,short溢出到了负数就归0。

机器标识(4bytes 32bit): 拿localHost的IP地址,IPV4呢正好4个byte,但如果是IPV6要16个bytes,就只拿前4个byte。

进程标识(4bytes 32bit): 用当前时间戳右移8位再取整数应付,不信两条线程会同时启动。

3) MongoDB

  MongoDB的ObjectId.java

时间戳(4 bytes 32bit):是秒级别的,从1970年算起,能撑136年。

自增序列(3bytes 24bit, 最大值一千六百万): 是一个从随机数开始(机智)的Int不断加一,也没有时间戳过了一秒要归零的事,各搞各的。因为只有3bytes,所以一个4bytes的Int还要截一下后3bytes。

机器标识(3bytes 24bit): 将所有网卡的Mac地址拼在一起做个HashCode,同样一个int还要截一下后3bytes。搞不到网卡就用随机数混过去。

进程标识(2bytes 16bits):从JMX里搞回来到进程号,搞不到就用进程名的hash或者随机数混过去。

可见,MongoDB的每一个字段设计都比Hibernate的更合理一点,时间戳是秒级别的,自增序列变长了,进程标识变短了。总长度也降到了12 bytes 96bit。

4) Twitter的snowflake派号器

  snowflake也是一个派号器,基于Thrift的服务,不过不是用redis简单自增,而是类似UUID version1,

只有一个Long 64bit的长度,所以IdWorker紧巴巴的分配成:

时间戳(42bit) :自从2012年以来(比那些从1970年算起的会过日子)的毫秒数,能撑139年。

自增序列(12bit,最大值4096):毫秒之内的自增,过了一毫秒会重新置0。

DataCenter ID (5 bit, 最大值32):配置值,支持多机房。

Worker ID ( 5 bit, 最大值32),配置值,因为是派号器的id,一个机房里最多32个派号器就够了,还会在ZK里做下注册。

        可见,因为是中央派号器,把至少40bit的节点标识都省出来了,换成10bit的派号器标识。所以整个UID能够只用一个Long表达。

  另外,这种派号器,client每次只能一个ID,不能批量取,所以额外增加的延时是问题,而且只能1024台机器范围之内。

  以上几种方案同一个问题,不可自定义,位数过长


来源:中生代技术

原文链接


相关文章
|
12天前
|
监控 算法 网络协议
|
2月前
|
自然语言处理 搜索推荐 数据库
高性能分布式搜索引擎Elasticsearch详解
高性能分布式搜索引擎Elasticsearch详解
81 4
高性能分布式搜索引擎Elasticsearch详解
|
4月前
|
设计模式 存储 缓存
Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
52 0
|
4月前
|
消息中间件 分布式计算 Java
实现高性能的分布式计算系统的Java方法
实现高性能的分布式计算系统的Java方法
|
4月前
|
存储 缓存 NoSQL
使用Java构建高性能的分布式缓存系统
使用Java构建高性能的分布式缓存系统
|
5月前
|
存储 分布式数据库 数据库
深入OceanBase内部机制:分区构建高可用、高性能的分布式数据库基石
深入OceanBase内部机制:分区构建高可用、高性能的分布式数据库基石
|
5月前
|
存储 关系型数据库 MySQL
深入OceanBase内部机制:高性能分布式(实时HTAP)关系数据库概述
深入OceanBase内部机制:高性能分布式(实时HTAP)关系数据库概述
|
25天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
105 2
基于Redis的高可用分布式锁——RedLock
|
1天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
30 16

热门文章

最新文章

下一篇
无影云桌面