【分布式计算框架】hadoop全分布式及高可用搭建

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
简介: 【分布式计算框架】hadoop全分布式及高可用搭建

hadoop全分布式及高可用搭建

一、实验目的

  • hadoop完全分布式搭建
  • hadoop高可用搭建

二、实验环境

  • ubuntu 6.5
  • VMware Workstation

三、实验内容

hadoop全分布式搭建

一、准备工作:(前提:已配置好node01为伪分布式服务器)

(1)安装java

同理在2、3…号机安装java

(2)同步所有服务器时间

date

date -s “2024-03-17 19:33:00” //所有会话

(3)cat /etc/sysconfig/network //查看机器IP映射

(4)cat /etc/hosts //所有所有机器别名

(5)cat /etc/sysconfig/selinux //selinux 关闭

(6)关闭防火墙

(7)ssh 免密钥 //管理节点分发密钥文件给其他节点

分发给node02:

在node1上输入:scp id_dsa.pub hxq20191909node02:pwd/20191909node01.pub

在node02的.ssh目录下输入

cat 20191909node01.pub >>authorized_keys

以此类推

二、修改配置文件

/opt/20191909/hadoop-2.6.5/etc/hadoop 目录下

备份hadoop

node02:

(1)core-site.xml

 <configuration>
   <property>
     <name>fs.defaultFS</name>
     <value>hdfs://node02:9000</value>
   </property>
   <property>
     <name>hadoop.tmp.dir</name>
     <value>/var/20191909/hadoop/full</value>
   </property>  
 </configuration>

(2)hdfs-site.xml

   <property>
      <name>dfs.replication</name>
      <value>2</value>
   </property>
   <property>
      <name>dfs.namenode.secondary.http-address</name>
      <value>hxq20191909node02:50090</value>
   </property>

(3)slaves

 node02
 node03
 node04
 node05
 node06

三、分发hadoop-2.6.5给其他节点
scp -r 20191909/  hxq20191909node02:`pwd`

以此类推

四、分发环境变量给其他节点
scp /etc/profile hxq20191909node02:/etc/ #node1会话下
. /etc/profile #全部会话下

五、格式化
hdfs namenode -format
 //ls  /var/20191909/hadoop/full

六、启动
start-dfs.sh

七、出现问题,看日志
ll /opt/20191909/hadoop-2.6.5/logs
tail -100 hadoop-root-datanode-20191909node01.log

八、浏览器查看信息
20191909node01:50070

创建目录

浏览器上查看

九、练习上传文件

在~/software目录里创建一个新文件

for i in seq 100000;do echo “hello 20191909$i” >> test.txt;done

查看新文件大小

ll -h //test.txt文件大小约为3.5M

设置块大小上传文件

hdfs dfs -D dfs.blocksize=1048576 -put test.txt

浏览器查看文件块

高可用搭建

先关闭服务

(1)文档:/opt/20191909/hadoop-2.6.5/share/doc/hadoop 官方文档

(2)两个namenode节点互相免密钥

(本例中node01,node02互相免密钥,node02生成密钥文件,分发自己和node01)

在node02的.ssh目录下输入

ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa   

cat id_dsa.pub >> authorized_keys           //将id_dsa.pub公钥文件追加到验证文件

scp id_dsa.pub 20191909node01:`pwd`/hxq20191909node02.pub//分发密钥给node01

cat hxq20191909node02.pub>>authorized_keys //在node01的.ssh目录下

在node02下来登录node01

(3)配置文件:

在/opt/20191909/hadoop-2.6.5/etc/hadoop目录下

  1. dfs.nameservices //逻辑名称

hdfs-site.xml

<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>

  1. dfs.ha.namenodes.[nameservice ID] //只能1主1从两个
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>

  1. dfs.namenode.rpc-address.[nameservice ID].[name node ID]
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>20191909node01:8020</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>hxq20191909node02:8020</value>
</property>

4.dfs.namenode.http-address.[nameservice ID].[name node ID]

<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>20191909node01:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>hxq20191909node02:50070</value>
</property>

5.dfs.namenode.shared.edits.dir // URI which identifies the group of JNs

<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://20191909node01:8485;hxq20191909node02:8485;hxq20191909node03:8485/mycluster</value>
</property>

6.dfs.client.failover.proxy.provider.[nameservice ID] //java class that HDFS clients use to contact the Active Namenode

<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>   
</property>

  1. dfs.ha.fencing.methods //a list of scripts or java classes which will be used to fence the Active Namenodes during a failover
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>

<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_dsa</value>    
</property>

8.fs.defaultFS //the default path prefix used by the Hadoop FS client when none is given

core-site.xml

<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>

 <property>
 <name>hadoop.tmp.dir</name>
 <value>/var/20191909/hadoop/ha</value>
 </property>
  1. core-site暂时修改完成
  2. dfs.journalnode.edits.dir //the path where the journalnode daemon will store its local state
    在hdfs-site中修改
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/var/20191909/hadoop/ha/journalnode</value>

(4)zookeeper配置(自动故障转移)


ZooKeeper quorum and ZKFailoverController process

ZooKeeper 功能:Failure detection; Active Namenode election

ZKFC 功能:health monitoring;Zookeeper session management;zookeeper-based election)

hdfs-site.xml

<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>

core-site.xml

<property>
<name>ha.zookeeper.quorum</name>
<value>hxq20191909node02:2181,hxq20191909node03:2181,hxq20191909node04:2181,hxq20191909node05:2181,hxq20191909node06:2181</value>
</property>

(5) 分发配置文件给其他节点

scp core-site.xml hdfs-site.xml hxq20191909node02:`pwd`
scp core-site.xml hdfs-site.xml hxq20191909node03:`pwd`
...


(6) 搭建zookeeper

  1. 在相关节点安装zookeeper
    上传zookeeper-3.4.6.tar.gz压缩包

  1. 解压缩文件到/opt/20191909/目录下

tar xf zookeeper-3.4.6.tar.gz -C /opt/20191909/


  1. 配置zookeeper

进入zookeeper目录的conf目录

mv zoo_sample.cfg zoo.cfg

修改zoo.cfg,

dataDir=/var/20191909/zk (创建该目录)

增加:

server.1=hxq20191909node02:2888:3888
server.2=hxq20191909node03:2888:3888
server.3=hxq20191909node04:2888:3888
server.4=hxq20191909node05:2888:3888
server.5=hxq20191909node06:2888:3888


//1是ID,2888是主从节点通信端口,3888是选举机制端口,zookeeper也是主从架构,也有选举机制

  1. 分发zookeeper给其他节点
scp -r zookeeper-3.4.6/ hxq20191909node03:`pwd` //node3~6

mkdir -p /var/20191909/zk //都要创建
echo 1 > /var/20191909/zk/myid  //node02
echo 2 > /var/20191909/zk/myid  //node03
echo 3 > /var/20191909/zk/myid  //node04
echo 4 > /var/20191909/zk/myid  //node05
echo 5 > /var/20191909/zk/myid  //node06

5.设置环境变量(/etc/profile)

export ZOOKEEPER_HOME=/opt/20191909/zookeeper-3.4.6

PATH=$PATH:$ZOOKEEPER_HOME/bin

6.分发:

scp /etc/profile  hxq20191909node03:/etc/    //3~6都要发 然后. /etc/profile #2给3

(7) 启动zookeeper

zkServer.sh  start 

jps //查看进程: QuorumPeerMain

或者:

zkServer.sh status // Mode:leader  or  Mode:foolwer

zkServer.sh stop  //关闭zookeeper

注意:至少启动两台服务器

(8) 启动journalnode(3个节点)

hadoop-daemon.sh start journalnode

(9) 格式化node01(或 node02)

hdfs namenode -format

(10)启动node02

hadoop-daemon.sh start namenode

(11)复制node02元数据信息给node01

hdfs namenode -bootstrapStandby (在node01中执行)

(12)两个namenode在zookeeper上注册

 1.zkCli.sh  //客户端查看
     
    ls / 只有[zookeeper]

 2. hdfs zkfc -formatZK   //initializing HA state in zookeeper

    再查看: [hadoop-ha,zookeeper]

(13)在node01上启动(因为有免密钥登录)

start-dfs.sh

(14)浏览器访问

20191909node01:50070   //active
hxq20191909node02:50070   //standby

(15)实验:关闭node01(active namenode)

hadoop-daemon.sh stop namenode

hxq20191909node02:50070 //显示为active

关闭node01的namenode再打开

此时node01的状态变成standby

四、出现的问题及解决方案

  1. 报错

[root@hxq20191909node02 20191909]# zkServer.sh status JMX enabled by default Using config: /opt/20191909/zookeeper-3.4.6/bin/…/conf/zoo.cfg Error contacting service. It is probably not running.

解决方案

恢复快照,重新配置文件,细心一点

五、实验结果

实验成功搭建全分布式及高可用架构

现在在浏览器查看状态为

e

[外链图片转存中…(img-7DISxQuh-1711692961927)]

[外链图片转存中…(img-7O6QIYN8-1711692961927)]

关闭node01的namenode再打开

此时node01的状态变成standby

[外链图片转存中…(img-pd7VFpa9-1711692961927)]

[外链图片转存中…(img-NUYGW4gv-1711692961928)]

四、出现的问题及解决方案

报错

[root@hxq20191909node02 20191909]# zkServer.sh status JMX enabled by default Using config: /opt/20191909/zookeeper-3.4.6/bin/…/conf/zoo.cfg Error contacting service. It is probably not running.

解决方案

恢复快照,重新配置文件,细心一点

五、实验结果

实验成功搭建全分布式及高可用架构

现在在浏览器查看状态为

[外链图片转存中…(img-GDga6CX5-1711692961928)]

[外链图片转存中…(img-jVi3Fmxa-1711692961928)]

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
3月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
1041 66
|
2月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
113 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
2月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
75 7
|
2月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
113 7
|
3月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
135 2
|
4月前
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
69 1
|
5月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
283 6
|
5月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
128 2
|
3月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
121 4
|
4月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
258 2