大数据应用在医疗的五大方向

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。因此,医疗行业将和银行、电信、保险等行业一起首先迈入大数据时代。

本文列出了医疗服务业5大领域(临床业务、付款/定价、研发、新的商业模式、公众健康)的15项应用,这些场景下,大数据的分析和应用都将发挥巨大的作用,提高医疗效率和医疗效果。

20161026051738813.png

  一、临床操作

在临床操作方面,有5个主要场景的大数据应用。麦肯锡估计,如果这些应用被充分采用,光是美国,国家医疗健康开支一年就将减少165亿美元。

1.比较效果研究

通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。基于疗效的研究包括比较效果研究(Comparative Effectiveness Research,CER)。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在着很大的差异。精准分析包括病人体征数据、费用数据和疗效数据在内的大型数据集,可以帮助医生确定临床上最有效和最具有成本效益的治疗方法。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。从长远来看,不管是过度治疗还是治疗不足都将给病人身体带来负面影响,以及产生更高的医疗费用。

世界各地的很多医疗机构(如英国的NICE,德国IQWIG,加拿大普通药品检查机构等)已经开始了CER项目并取得了初步成功。2009年,美国通过的复苏与再投资法案,就是向这个方向迈出的第一步。在这一法案下,设立的比较效果研究联邦协调委员会协调整个联邦政府的比较效果的研究,并对4亿美元投入资金进行分配。这一投入想要获得成功,还有大量潜在问题需要解决,比如,临床数据和保险数据的一致性问题,当前在缺少EHR(电子健康档案)标准和互操作性的前提下,大范围仓促部署EHR可能造成不同数据集难以整合。再如,病人隐私问题,想要在保护病人隐私的前提下,又要提供足够详细的数据以便保证分析结果的有效性不是一件容易的事情。还有一些体制问题,比如目前美国法律禁止医疗保险机构和医疗补助服务中心(Centers for Medicare and Medicaid Services)(医疗服务支付方)使用成本/效益比例来制定报销决策,因此即便他们通过大数据分析找到更好的方法也很难落实。

2.临床决策支持系统

临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。在美国Metropolitan儿科重症病房的研究中,两个月内,临床决策支持系统就削减了40%的药品不良反应事件数量。

大数据分析技术将使临床决策支持系统更智能,这得益于对非结构化数据的分析能力的日益加强。比如可以使用图像分析和识别技术,识别医疗影像(X光、CT、MRI)数据,或者挖掘医疗文献数据建立医疗专家数据库(就像IBM Watson做的),从而给医生提出诊疗建议。此外,临床决策支持系统还可以使医疗流程中大部分的工作流流向护理人员和助理医生,使医生从耗时过长的简单咨询工作中解脱出来,从而提高治疗效率。

3.医疗数据透明度

提高医疗过程数据的透明度,可以使医疗从业者、医疗机构的绩效更透明,间接促进医疗服务质量的提高。根据医疗服务提供方设置的操作和绩效数据集,可以进行数据分析并创建可视化的流程图和仪表盘,促进信息透明。流程图的目标是识别和分析临床变异和医疗废物的来源,然后优化流程。仅仅发布成本、质量和绩效数据,即使没有与之相应的物质上的奖励,也往往可以促进绩效的提高,使医疗服务机构提供更好的服务,从而更有竞争力。

数据分析可以带来业务流程的精简,通过精益生产降低成本,找到符合需求的工作更高效的员工,从而提高护理质量并给病人带来更好的体验,也给医疗服务机构带来额外的业绩增长潜力。美国医疗保险和医疗补助服务中心正在测试仪表盘,将其作为建设主动、透明、开放、协作型政府的一部分。本着同样的精神,美国疾病控制和预防中心(Centers for Disease Control and Prevention)已经公开发布医疗数据,包括业务数据。公开发布医疗质量和绩效数据还可以帮助病人做出更明智的健康护理决定,这也将帮助医疗服务提供方提高总体绩效,从而更具竞争力。

4.远程病人监控

从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。2010年,美国有1.5亿慢性病患者,如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。

5.对病人档案的先进分析

在病人档案方面应用高级分析可以确定哪些人是某类疾病的易感人群。举例说,应用高级分析可以帮助识别哪些病人有患糖尿病的高风险,使他们尽早接受预防性保健方案。这些方法也可以帮患者从已经存在的疾病管理方案中找到最好的治疗方案。

二、付款/定价

对医疗支付方来说,通过大数据分析可以更好地对医疗服务进行定价。以美国为例,这将有潜力创造每年500亿美元的价值,其中一半来源于国家医疗开支的降低。

1.自动化系统

自动化系统(例如机器学习技术)检测欺诈行为。业内人士评估,每年有2%~4%的医疗索赔是欺诈性的或不合理的,因此检测索赔欺诈具有巨大的经济意义。通过一个全面的一致的索赔数据库和相应的算法,可以检测索赔准确性,查出欺诈行为。这种欺诈检测可以是追溯性的,也可以是实时的。在实时检测中,自动化系统可以在支付发生前就识别出欺诈,避免重大的损失。

2.基于卫生经济学和疗效研究的定价计划

在药品定价方面,制药公司可以参与分担治疗风险,比如基于治疗效果制定定价策略。这对医疗支付方的好处显而易见,有利于控制医疗保健成本支出。对患者来说,好处更加直接。他们能够以合理的价格获得创新的药物,并且这些药物经过基于疗效的研究。而对医药产品公司来说,更好的定价策略也是好处多多。他们可以获得更高的市场准入可能性,也可以通过创新的定价方案,更有针对性疗效药品的推出,获得更高的收入。在欧洲,现在有一些基于卫生经济学和疗效的药品定价试点项目。

一些医疗支付方正在利用数据分析衡量医疗服务提供方的服务,并依据服务水平进行定价。医疗服务支付方可以基于医疗效果进行支付,他们可以与医疗服务提供方进行谈判,看医疗服务提供方提供的服务是否达到特定的基准。

三、研发

医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。

1.预测建模

医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。

除了研发成本,医药公司还可以更快地得到回报。通过数据建模和分析,医药公司可以将药物更快推向市场,生产更有针对性的药物,有更高潜在市场回报和治疗成功率的药物。原来一般新药从研发到推向市场的时间大约为13年,使用预测模型可以帮助医药企业提早3~5年将新药推向市场。

2.提高临床试验设计的统计工具和算法

使用统计工具和算法,可以提高临床试验设计水平,并在临床试验阶段更容易地招募到患者。通过挖掘病人数据,评估招募患者是否符合试验条件,从而加快临床试验进程,提出更有效的临床试验设计建议,并能找出最合适的临床试验基地。比如那些拥有大量潜在符合条件的临床试验患者的试验基地可能是更理想的,或者在试验患者群体的规模和特征二者之间找到平衡。

3.临床实验数据的分析

分析临床试验数据和病人记录可以确定药品更多的适应症和发现副作用。在对临床试验数据和病人记录进行分析后,可以对药物进行重新定位,或者实现针对其他适应症的营销。实时或者近乎实时地收集不良反应报告可以促进药物警戒(药物警戒是上市药品的安全保障体系,对药物不良反应进行监测、评价和预防)。或者在一些情况下,临床实验暗示出了一些情况但没有足够的统计数据去证明,现在基于临床试验大数据的分析可以给出证据。

这些分析项目是非常重要的。可以看到最近几年药品撤市数量屡创新高,药品撤市可能给医药公司带来毁灭性的打击。2004年从市场上撤下的止痛药Vioxx,给默克公司造成70亿美元的损失,短短几天内就造成股东价值33%的损失。

4.个性化治疗

另一种在研发领域有前途的大数据创新,是通过对大型数据集(例如基因组数据)的分析发展个性化治疗。这一应用考察遗传变异、对特定疾病的易感性和对特殊药物的反应的关系,然后在药物研发和用药过程中考虑个人的遗传变异因素。

个性化医学可以改善医疗保健效果,比如在患者发生疾病症状前,就提供早期的检测和诊断。很多情况下,病人用同样的诊疗方案但是疗效却不一样,部分原因是遗传变异。针对不同的患者采取不同的诊疗方案,或者根据患者的实际情况调整药物剂量,可以减少副作用。

个性化医疗目前还处在初期阶段。麦肯锡估计,在某些案例中,通过减少处方药量可以减少30%~70%的医疗成本。比如,早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。

5.疾病模式的分析

通过分析疾病的模式和趋势,可以帮助医疗产品企业制定战略性的研发投资决策,帮助其优化研发重点,优化配备资源。

四、新的商业模式

大数据分析可以给医疗服务行业带来新的商业模式。

1.汇总患者的临床记录和医疗保险数据集

汇总患者的临床记录和医疗保险数据集,并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医学发展的速度。

2.网络平台和社区

另一个潜在的大数据启动的商业模型是网络平台和大数据,这些平台已经产生了大量有价值的数据。比如PatientsLikeMe.com网站,病人可以这个网站上分享治疗经验:Sermo.com网站,医生可以在这个网站上分享医疗见解:Participatorymedicine.org网站,这家非营利性组织运营的网站鼓励病人积极进行治疗。这些平台可以成为宝贵的数据来源。例如,Sermo.com向医药公司收费,允许他们访问会员信息和网上互动信息。

五、公众健康

大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。所有的这些都将帮助人们创造更好的生活。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
6天前
|
存储 数据可视化 大数据
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
15 5
|
7天前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
20 6
|
10天前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
1月前
|
机器学习/深度学习 数据可视化 大数据
阿里云大数据的应用示例
阿里云大数据应用平台为企业提供高效数据处理与业务洞察工具,涵盖Quick BI、DataV及PAI等核心产品。DT203课程通过实践教学,帮助学员掌握数据可视化、报表设计及机器学习分析技能,提升数据驱动决策能力。Quick BI简化复杂数据分析,DataV打造震撼可视化大屏,PAI支持全面的数据挖掘与算法应用。课程面向CSP、ISV及数据工程师等专业人士,为期两天,结合面授与实验,助力企业加速数字化转型。完成课程后,学员将熟练使用阿里云工具进行数据处理与分析。[了解更多](https://edu.aliyun.com/training/DT203)
|
9天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能与大数据的融合应用##
随着科技的快速发展,人工智能(AI)和大数据技术已经深刻地改变了我们的生活。本文将探讨人工智能与大数据的基本概念、发展历程及其在多个领域的融合应用。同时,还将讨论这些技术所带来的优势与挑战,并展望未来的发展趋势。希望通过这篇文章,读者能够对人工智能与大数据有更深入的理解,并思考其对未来社会的影响。 ##
|
1月前
|
消息中间件 SQL 大数据
Hologres 在大数据实时处理中的应用
【9月更文第1天】随着大数据技术的发展,实时数据处理成为企业获取竞争优势的关键。传统的批处理框架虽然在处理大量历史数据时表现出色,但在应对实时数据流时却显得力不从心。阿里云的 Hologres 是一款全托管、实时的交互式分析服务,它不仅支持 SQL 查询,还能够与 Kafka、MaxCompute 等多种数据源无缝对接,非常适合于实时数据处理和分析。
78 2
|
2月前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。
|
2月前
|
存储 SQL 分布式计算
MaxCompute 在大规模数据仓库中的应用
【8月更文第31天】随着大数据时代的到来,企业面临着海量数据的存储、处理和分析挑战。传统的数据仓库解决方案在面对PB级甚至EB级的数据规模时,往往显得力不从心。阿里云的 MaxCompute(原名 ODPS)是一个专为大规模数据处理设计的服务平台,它提供了强大的数据存储和计算能力,非常适合构建和管理大型数据仓库。本文将探讨 MaxCompute 在大规模数据仓库中的应用,并展示其相对于传统数据仓库的优势。
78 0
|
2月前
|
存储 关系型数据库 大数据
PolarDB 大数据处理能力及其应用场景
【8月更文第27天】随着数据量的爆炸性增长,传统的数据库系统面临着存储和处理大规模数据集的挑战。阿里云的 PolarDB 是一种兼容 MySQL、PostgreSQL 和高度可扩展的关系型数据库服务,它通过其独特的架构设计,能够有效地支持海量数据的存储和查询需求。
56 0
|
2月前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持

热门文章

最新文章

下一篇
无影云桌面