认识AI

简介: 本文介绍了AI核心概念与大模型开发原理,涵盖人工智能发展历程及Transformer神经网络的关键作用。通过注意力机制,Transformer实现对文本、图像、音频的高效处理,成为GPT等大模型的基础。文章解析了LLM如何利用Transformer进行持续推理生成,逐字输出内容,揭示ChatGPT类模型对话能力的技术本质。(238字)

本篇介绍了AI的一些核心概念,有利于你理解大模型开发的一些原理。
1.人工智能发展
AI,人工智能(Artificial Intelligence),使机器能够像人类一样思考、学习和解决问题的技术。
AI发展至今大概可以分为三个阶段:
其中,深度学习领域的自然语言处理(Natural Language Processing, NLP)有一个关键技术叫做Transformer,这是一种由多层感知机组成的神经网络模型,是现如今AI高速发展的最主要原因。
我们所熟知的大模型(Large Language Models, LLM),例如GPT、DeepSeek底层都是采用Transformer神经网络模型。以GPT模型为例,其三个字母的缩写分别是Generative、Pre-trained、Transformer:
那么问题来, Transformer神经网络有什么神奇的地方,可以实现如此强大的能力呢?
2.大模型原理
其实,最早Transformer是由Google在2017年提出的一种神经网络模型,一开始的作用是把它作为机器翻译的核心:
Transformer中提出的注意力机制使得神经网络在处理信息时可以根据上下内容调整对数据的理解,变得更加智能化。这不仅仅是说人类的文字,包括图片、音频数据都可以交给Transformer来处理。于是,越来越多的模型开始基于Transformer实现了各种神奇的功能。
例如,有的模型可以根据音频生成文本,或者根据文本生成音频:
还有的模型则可以根据文字生成图片,比如Dall-E、MidJourney:
不过,我们今天要聊的大语言模型(Large Language Models, 以下简称LLM)是对Transformer的另一种用法:推理预测。
LLM在训练Transformer时会尝试输入一些文本、音频、图片等信息,然后让Transformer推理接下来跟着的应该是什么内容。推理的结果会以概率分布的形式出现:
可能大家会有疑问:
仅仅是推测接下来的内容,怎么能让ChatGPT在对话中生成大段的有关联的文字内容呢?
其实LLM采用的就是笨办法,答案就是:持续生成
根据前文推测出接下来的一个词语后,把这个词语加入前文,再次交给大模型处理,推测下一个字,然后不断重复前面的过程,就可以生成大段的内容了:
这就是为什么我们跟AI聊天的时候,它生成的内容总是一个字一个字的输出的原因了。
以上就是LLM的核心技术,Transformer的原理了~
如果大家想要进一步搞清楚Transformer机制,可以参考以下两个视频:
https://www.bilibili.com/video/BV1atCRYsE7x
https://www.youtube.com/watch?v=wjZofJX0v4M&t=1169s

相关文章
|
2月前
|
人工智能 Java 程序员
SpringAI+DeepSeek大模型应用开发
本教程以SpringAI为核心,讲解Java与大模型(如DeepSeek)融合开发,助力传统应用智能化升级。适合Java程序员入门AI开发,推动企业低成本拥抱AI变革。
|
2月前
|
存储 SQL 人工智能
AI时代代码开发(数据库设计)
本文介绍基于三范式与DDD的数据库设计流程,结合AI工具辅助分析页面原型,通过部门、员工及工作经历模块,演示表结构设计与优化过程,强调人工校验与调整的重要性,最终完成符合业务需求的数据库建模与测试数据构建。
|
2月前
|
存储 弹性计算 人工智能
大模型应用开发
大模型应用开发指通过API与大模型交互,构建智能化应用。不同于传统Java开发,其核心在于调用部署在云端或本地的大模型服务。企业可选择开放API、云平台或本地服务器部署,各具成本、安全与性能权衡。本章将详解部署方式与开发实践,助你快速入门。
|
7月前
|
前端开发 程序员
墨刀原型图的原理、与UI设计图的区别及转换方法详解-卓伊凡|贝贝
墨刀原型图的原理、与UI设计图的区别及转换方法详解-卓伊凡|贝贝
702 24
墨刀原型图的原理、与UI设计图的区别及转换方法详解-卓伊凡|贝贝
|
3月前
|
人工智能 自然语言处理 算法
数字人定制平台哪个好?亲测5款后我选了它
# 数字人定制平台哪个好?亲测5款后我选了它 据艾瑞咨询2025年数据显示,中国数字人市场规模已突破200亿元,年增长率达47%。越来越多企业开始尝试用AI数字人提升客服效率、直播转化或品牌IP化。
数字人定制平台哪个好?亲测5款后我选了它
|
3月前
|
人工智能 安全 调度
一文详解容器服务面向大模型和 AI Agent 的技术变革
在生成式人工智能迅猛发展的浪潮下,企业应用正加速从模型研究走向业务落地。无论是大规模的数据处理、超大参数模型的训练与推理,还是部署能够自动完成任务的 AI Agent,这些场景都需要稳定、高效且可弹性伸缩的资源调度与管理能力。容器凭借环境一致性、跨平台部署和高效调度等优势,天然契合 AI 场景对多样化算力、快速迭代和规模化分发的要求,成为 AI 时代事实上的原生基石。然而,要满足在生产规模下的需求,产品及技术形态需随之演进。
335 3
|
1月前
|
Kubernetes 应用服务中间件 API
应对 Nginx Ingress 退役,是时候理清这些易混淆的概念了
本文希望提供一种更简单的方式,来理解这些容易混淆的技术概念:Nginx、Ingress、Ingress Controller、Ingress API、Nginx Ingress、Higress、Gateway API。
742 69
|
12天前
|
人工智能 自然语言处理 Cloud Native
大模型应用落地实战:从Clawdbot到实在Agent,如何构建企业级自动化闭环?
2026年初,开源AI Agent Clawdbot爆火,以“自由意志”打破被动交互,寄生社交软件主动服务。它解决“听与说”,却缺“手与脚”:硅谷Manus走API原生路线,云端自主执行;中国实在Agent则用屏幕语义理解,在封闭系统中精准操作。三者协同,正构建AI真正干活的三位一体生态。
2800 10
|
2月前
|
JSON 安全 JavaScript
HTTPS 原理
HTTPS是HTTP与SSL/TLS的结合,通过数字证书验证身份,利用非对称加密安全交换会话密钥,再以对称加密高效传输数据。它确保了通信的机密性、完整性和服务器真实性,在互联网上构建安全加密通道。
|
3月前
|
人工智能 数据处理 数据库
多源 RAG 自动化处理:从 0 到 1 构建事件驱动的实时 RAG 应用
当企业想用大模型和内部非公开信息打造智能问答系统时,RAG(Retrieval-Augmented Generation,检索增强生成)已成为必备技术。然而,在实际落地中,构建 RAG 应用的数据准备过程繁琐复杂且充满挑战,让很多企业和开发者望而却步。本文将介绍构建 RAG 的最佳实践:通过阿里云事件总线 EventBridge 提供的多源 RAG 处理方案,基于事件驱动架构为企业 AI 应用打造高效、可靠、自动化的数据管道,轻松解决 RAG 数据处理难题。
444 39