大模型应用开发

简介: 大模型应用开发指通过API与大模型交互,构建智能化应用。不同于传统Java开发,其核心在于调用部署在云端或本地的大模型服务。企业可选择开放API、云平台或本地服务器部署,各具成本、安全与性能权衡。本章将详解部署方式与开发实践,助你快速入门。

大模型应用开发
相信大家肯定会有疑问:

什么是大模型应用开发呢?

跟传统的Java应用开发又有什么区别呢?

我们该如何去开发大模型应用呢?
别着急,本章我们就一起来分析一下。
模型部署
首先要明确一点:大模型应用开发并不是在浏览器中跟AI聊天。而是通过访问模型对外暴露的API接口,实现与大模型的交互。
因此,企业首先需要有一个可访问的大模型,通常有三种选择:

使用开放的大模型API:如你打开浏览器访问DeepSeek、豆包、GPT

在云平台部署私有大模型:如阿里云ECS通过Ollama部署DeepSeek

在本地服务器部署私有大模型:如公司服务器通过Ollama部署DeepSeek
使用开放大模型API的优缺点如下:

优点:

没有部署和维护成本,按调用收费

缺点:

依赖平台方,稳定性差

长期使用成本较高

数据存储在第三方,有隐私和安全问题
云平台部署私有模型:

优点:

前期投入成本低

部署和维护方便

网络延迟较低

缺点:

数据存储在第三方,有隐私和安全问题

长期使用成本高
本地部署私有模型:

优点:

数据完全自主掌控,安全性高

不依赖外部环境

虽然短期投入大,但长期来看成本会更低

缺点:

初期部署成本高

维护困难
注意:
这里说的本地部署并不是说在你自己电脑上部署,而是公司自己的服务器部署。
由于大模型所需要的算力非常多,自己电脑部署的模型往往都是阉割蒸馏版本,性能和推理能力都比较差。
再加上现在各种模型都有很多免费的服务可以访问,性能还是满血版本,推理能力拉满。
所以完全不建议大家在自己电脑上部署,除非你想自己做模型微调或测试。
接下来,我们给大家演示下两种部署方式:

开发大模型服务

本地部署(在本机演示,将来在服务器也是类似的

相关文章
|
2月前
|
人工智能 自然语言处理 数据可视化
构建AI智能体:五十六、从链到图:LangGraph解析--构建智能AI工作流的艺术工具
本文介绍了LangGraph这一基于LangChain的库,它突破了传统线性链式开发的局限,通过图计算模型实现复杂AI应用的构建。LangGraph的核心优势在于:1)支持动态图结构,实现循环和条件路由;2)内置状态管理,维护应用数据流;3)天然支持多智能体协作。与传统开发方式相比,LangGraph通过节点、边和状态的抽象,提供了更清晰的业务逻辑表达、更健壮的错误处理、更好的可观测性,以及更便捷的团队协作和功能扩展能力。
607 10
|
2月前
|
缓存 算法 C++
模型推理加速
大模型推理加速关键技术包括KV-Cache优化、连续批处理、投机解码与模型并行等,涵盖算法、系统与硬件协同优化。vLLM等框架通过PagedAttention提升效率,助力高并发、低延迟场景落地。
154 0
|
6月前
|
人工智能 JavaScript 前端开发
​​大模型开发从入门到部署
本内容系统讲解大语言模型技术,涵盖BERT、GPT等主流架构,深入Transformer原理与自注意力机制,结合PyTorch实战,详解张量操作、自动求导与模型训练,并介绍RAG、Agent等典型应用场景,助你掌握AI核心技术。
710 0
|
机器学习/深度学习 人工智能 自然语言处理
大模型:人工智能发展的引擎
大模型:人工智能发展的引擎
1391 0
|
9月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
4666 0
|
10月前
|
机器学习/深度学习 算法 NoSQL
记录转大模型—InitCommit
嗯,写点东西记录一下转大模型的经历。
218 14
|
10月前
|
自然语言处理 分布式计算 前端开发
大模型应用开发入门分享
本文是作者给兄弟团队做的大模型入门分享,介绍了基本大模型模式,分享出来希望帮助更多的同学参与到LLM应用建设。
大模型应用开发入门分享
|
数据采集 数据可视化 数据挖掘
阿里云 Quick BI使用介绍
阿里云 Quick BI使用介绍
3601 3
|
消息中间件 存储 负载均衡
2024消息队列“四大天王”:Rabbit、Rocket、Kafka、Pulsar巅峰对决
本文对比了 RabbitMQ、RocketMQ、Kafka 和 Pulsar 四种消息队列系统,涵盖架构、性能、可用性和适用场景。RabbitMQ 以灵活路由和可靠性著称;RocketMQ 支持高可用和顺序消息;Kafka 专为高吞吐量和低延迟设计;Pulsar 提供多租户支持和高可扩展性。性能方面,吞吐量从高到低依次为
5363 1

热门文章

最新文章