Thread.sleep(0) 到底有什么用(读完就懂)

简介: 本文深入解析Thread.Sleep的原理与应用,通过生动的“分蛋糕”比喻,对比Unix时间片与Windows抢占式调度机制,阐明Sleep(1000)不保证准时唤醒、Sleep(0)实为触发CPU重新竞争的关键机制,揭示多线程调度本质。

我们可能经常会用到 Thread.Sleep 函数来吧使线程挂起一段时间。那么你有没有正确的理解这个函数的用法呢?

思考下面这两个问题:

假设现在是 2008-4-7 12:00:00.000,如果我调用一下 Thread.Sleep(1000) ,在 2008-4-7 12:00:01.000 的时候,这个线程会不会被唤醒?

某人的代码中用了一句看似莫明其妙的话:Thread.Sleep(0) 。既然是 Sleep 0 毫秒,那么他跟去掉这句代码相比,有啥区别么?

我们先回顾一下操作系统原理。

操作系统中,CPU竞争有很多种策略。Unix系统使用的是时间片算法,而Windows则属于抢占式的。

在时间片算法中,所有的进程排成一个队列。操作系统按照他们的顺序,给每个进程分配一段时间,即该进程允许运行的时间。如果在时间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。调度程 序所要做的就是维护一张就绪进程列表,当进程用完它的时间片后,它被移到队列的末尾。

所谓抢占式操作系统,就是说如果一个进程得到了 CPU 时间,除非它自己放弃使用 CPU ,否则将完全霸占 CPU 。因此可以看出,在抢 占式操作系统中,操作系统假设所有的进程都是“人品很好”的,会主动退出 CPU 。

在抢占式操作系统中,假设有若干进程,操作系统会根据他们的优先级、饥饿时间(已经多长时间没有使用过 CPU 了),给他们算出一 个总的优先级来。操作系统就会把 CPU 交给总优先级最高的这个进程。当进程执行完毕或者自己主动挂起后,操作系统就会重新计算一 次所有进程的总优先级,然后再挑一个优先级最高的把 CPU 控制权交给他。

我们用分蛋糕的场景来描述这两种算法。假设有源源不断的蛋糕(源源不断的时间),一副刀叉(一个CPU),10个等待吃蛋糕的人(10 个进程)。

如果是 Unix操作系统来负责分蛋糕,那么他会这样定规矩:每个人上来吃 1 分钟,时间到了换下一个。最后一个人吃完了就再从头开始。于是,不管这10个人是不是优先级不同、饥饿程度不同、饭量不同,每个人上来的时候都可以吃 1 分钟。当然,如果有人本来不太饿,或者饭量小,吃了30秒钟之后就吃饱了,那么他可以跟操作系统说:我已经吃饱了(挂起)。于是操作系统就会让下一个人接着来。

如果是 Windows 操作系统来负责分蛋糕的,那么场面就很有意思了。他会这样定规矩:我会根据你们的优先级、饥饿程度去给你们每个人计算一个优先级。优先级最高的那个人,可以上来吃蛋糕——吃到你不想吃为止。等这个人吃完了,我再重新根据优先级、饥饿程度来计算每个人的优先级,然后再分给优先级最高的那个人。

这样看来,这个场面就有意思了——可能有些人是PPMM,因此具有高优先级,于是她就可以经常来吃蛋糕。可能另外一个人是个丑男,而去很ws,所以优先级特别低,于是好半天了才轮到他一次(因为随着时间的推移,他会越来越饥饿,因此算出来的总优先级就会越来越高,因此总有一天会轮到他的)。而且,如果一不小心让一个大胖子得到了刀叉,因为他饭量大,可能他会霸占着蛋糕连续吃很久很久,导致旁边的人在那里咽口水。。。

而且,还可能会有这种情况出现:操作系统现在计算出来的结果,5号PPMM总优先级最高,而且高出别人一大截。因此就叫5号来吃蛋糕。5号吃了一小会儿,觉得没那么饿了,于是说“我不吃了”(挂起)。因此操作系统就会重新计算所有人的优先级。因为5号刚刚吃过,因此她的饥饿程度变小了,于是总优先级变小了;而其他人因为多等了一会儿,饥饿程度都变大了,所以总优先级也变大了。不过这时候仍然有可能5号的优先级比别的都高,只不过现在只比其他的高一点点——但她仍然是总优先级最高的啊。因此操作系统就会说:5号mm上来吃蛋糕……(5号mm心里郁闷,这不刚吃过嘛……人家要减肥……谁叫你长那么漂亮,获得了那么高的优先级)。

那么,Thread.Sleep 函数是干吗的呢?还用刚才的分蛋糕的场景来描述。上面的场景里面,5号MM在吃了一次蛋糕之后,觉得已经有8分饱了,她觉得在未来的半个小时之内都不想再来吃蛋糕了,那么她就会跟操作系统说:在未来的半个小时之内不要再叫我上来吃蛋糕了。这样,操作系统在随后的半个小时里面重新计算所有人总优先级的时候,就会忽略5号mm。Sleep函数就是干这事的,他告诉操作系统“在未来的多少毫秒内我不参与CPU竞争”。

看完了 Thread.Sleep 的作用,我们再来想想文章开头的两个问题。

对于第一个问题,答案是:不一定。因为你只是告诉操作系统:在未来的1000毫秒内我不想再参与到CPU竞争。那么1000毫秒过去之后,这时候也许另外一个线程正在使用CPU,那么这时候操作系统是不会重新分配CPU的,直到那个线程挂起或结束;况且,即使这个时候恰巧轮到操作系统进行CPU 分配,那么当前线程也不一定就是总优先级最高的那个,CPU还是可能被其他线程抢占去。

与此相似的,Thread有个Resume函数,是用来唤醒挂起的线程的。好像上面所说的一样,这个函数只是“告诉操作系统我从现在起开始参与CPU竞争了”,这个函数的调用并不能马上使得这个线程获得CPU控制权。

对于第二个问题,答案是:有,而且区别很明显。假设我们刚才的分蛋糕场景里面,有另外一个PPMM 7号,她的优先级也非常非常高(因为非常非常漂亮),所以操作系统总是会叫道她来吃蛋糕。而且,7号也非常喜欢吃蛋糕,而且饭量也很大。不过,7号人品很好,她很善良,她没吃几口就会想:如果现在有别人比我更需要吃蛋糕,那么我就让给他。因此,她可以每吃几口就跟操作系统说:我们来重新计算一下所有人的总优先级吧。不过,操作系统不接受这个建议——因为操作系统不提供这个接口。于是7号mm就换了个说法:“在未来的0毫秒之内不要再叫我上来吃蛋糕了”。这个指令操作系统是接受的,于是此时操作系统就会重新计算大家的总优先级——注意这个时候是连7号一起计算的,因为“0毫秒已经过去了”嘛。因此如果没有比7号更需要吃蛋糕的人出现,那么下一次7号还是会被叫上来吃蛋糕。

因此,Thread.Sleep(0)的作用,就是“触发操作系统立刻重新进行一次CPU竞争”。竞争的结果也许是当前线程仍然获得CPU控制权,也许会换成别的线程获得CPU控制权。这也是我们在大循环里面经常会写一句Thread.Sleep(0) ,因为这样就给了其他线程比如Paint线程获得CPU控制权的权力,这样界面就不会假死在那里。

另外,虽然上面提到说“除非它自己放弃使用 CPU ,否则将完全霸占 CPU”,但这个行为仍然是受到制约的——操作系统会监控你霸占CPU的情况,如果发现某个线程长时间霸占CPU,会强制使这个线程挂起,因此在实际上不会出现“一个线程一直霸占着 CPU 不放”的情况。至于我们的大循环造成程序假死,并不是因为这个线程一直在霸占着CPU。实际上在这段时间操作系统已经进行过多次CPU竞争了,只不过其他线程在获得CPU控制权之后很短时间内马上就退出了,于是就又轮到了这个线程继续执行循环,于是就又用了很久才被操作系统强制挂起。。。因此反应到界面上,看起来就好像这个线程一直在霸占着CPU一样。

相关文章
|
2月前
|
人工智能 边缘计算 自然语言处理
2025年中国数字人企业介绍与数字人技术新标准及选择指南
数字人技术正从辅助迈向核心生产力。2025年,行业聚焦提效、降本与多场景适配。五类平台覆盖创作、教育、IP打造等需求,助力内容生态进入务实新阶段。
|
2月前
|
负载均衡 应用服务中间件 Nacos
Nacos配置中心
本文详细介绍如何使用Nacos实现微服务配置中心,涵盖配置管理、热更新、共享配置及优先级规则,并演示Nacos集群搭建与高可用部署,提升系统可维护性与稳定性。
 Nacos配置中心
|
2月前
|
消息中间件 负载均衡 Linux
RabbitMQ部署指南
本文介绍RabbitMQ在CentOS7中基于Docker的单机与集群部署方案,涵盖镜像安装、DelayExchange插件配置、普通集群与镜像模式搭建,并详细演示仲裁队列使用及集群扩容方法,助力实现高可用消息队列服务。
 RabbitMQ部署指南
|
2月前
|
SQL 容灾 Nacos
Seata的部署和集成
本文介绍Seata TC服务器的部署与微服务集成,包括下载、配置、数据库表初始化及高可用集群搭建,实现基于Nacos的分布式事务管理与异地容灾支持。
|
7月前
|
人工智能 自然语言处理 搜索推荐
AI赋能教育与阿里云通义千问的结合
本简介介绍了AI技术如何赋能教育行业,结合阿里云“通义千问”大模型,助力海豚大数据及人工智能实验平台实现个性化教学、智能答疑与资源优化,推动高校与企业人才培养模式革新,构建终身学习生态体系。
552 1
|
10月前
|
云安全 安全 API
“安全体检”测评:安全自动化背后的隐忧与突破
本文围绕阿里云安全检查服务展开,从技术深度、场景适配和安全边界三个维度分析其价值与短板。该服务定位为自动化风险治理工具,涵盖漏洞扫描、合规基线和配置修复。体验中发现,其优势在于云原生体系耦合、资源拓扑感知及成本效益;不足则体现在量化指标缺失和攻击面覆盖有限。改进建议包括优化风险排序、引入AI分析及提供场景化助手。文章总结,该产品在基础风险治理和合规提效上表现良好,但需强化自动化修复与业务场景适配能力,以实现从工具到平台的跃迁。
437 65
|
11月前
|
API UED 开发者
HarmonyOS:动画 motionPath 、 animateToImmediately API自学指南
在鸿蒙应用开发中,动画是提升用户体验的关键。本文针对初学者面对众多动画API时的困惑,重点解析两个实用API:`motionPath`和`animateToImmediately`。前者通过精细控制组件运动路径(如SVG字符串定义轨迹),实现灵动位移动画;后者从API Version 12起支持显式动画立即下发,结合状态变化打造流畅动画序列。文中提供详细参数说明与示例代码,帮助开发者快速掌握技巧,让应用更生动。
320 8
|
存储 JavaScript 算法
JS垃圾回收机制有哪些?
本文介绍了JavaScript中的垃圾回收(GC)机制,包括其概念、产生原因及重要性。文章详细讲解了几种常见的垃圾回收算法,如引用计数、标记清除、标记整理和分代回收,并分析了它们的优缺点。最后总结了垃圾回收对JS开发的重要作用,强调了其在自动内存管理和性能优化中的关键地位。
673 2
JS垃圾回收机制有哪些?
|
存储 人工智能 自然语言处理
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
|
存储 数据可视化 Python
使用Python实现个人财务管理工具
本文介绍如何使用Python实现一个简单的个人财务管理工具,包括记录支出和收入、生成财务报告和数据可视化等功能。通过命令行界面输入数据,计算总支出、总收入和净收入,并使用Matplotlib库进行数据可视化。
887 2