CTR_GBDT_LR

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 基于CTR的GBDT和LR方法融合<br />数据源:直播提供数据<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
7月前
|
计算机视觉
如何理解focal loss/GIOU(yolo改进损失函数)
如何理解focal loss/GIOU(yolo改进损失函数)
|
7月前
|
机器学习/深度学习 监控 数据可视化
训练损失图(Training Loss Plot)
训练损失图(Training Loss Plot)是一种在机器学习和深度学习过程中用来监控模型训练进度的可视化工具。损失函数是衡量模型预测结果与实际结果之间差距的指标,训练损失图展示了模型在训练过程中,损失值随着训练迭代次数的变化情况。通过观察损失值的变化,我们可以评估模型的拟合效果,调整超参数,以及确定合适的训练停止条件。
1200 5
|
2月前
|
机器学习/深度学习 存储 搜索推荐
GBDT+LR简介
GBDT+LR简介
32 0
|
机器学习/深度学习 PyTorch 算法框架/工具
pytorch实现基本的logistic和softmax回归实验(手动+torch)
pytorch实现基本的logistic和softmax回归实验(手动+torch)
320 0
|
算法 固态存储 计算机视觉
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
480 0
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
DL之Perceptron&AdalineGD:基于iris莺尾花数据集利用Perceptron感知机和AdalineGD算法实现二分类
DL之Perceptron&AdalineGD:基于iris莺尾花数据集利用Perceptron感知机和AdalineGD算法实现二分类
DL之Perceptron&AdalineGD:基于iris莺尾花数据集利用Perceptron感知机和AdalineGD算法实现二分类
|
机器学习/深度学习 算法 Python
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
|
机器学习/深度学习
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
|
机器学习/深度学习 算法 TensorFlow
TF之BN:BN算法对多层中的每层神经网络加快学习QuadraticFunction_InputData+Histogram+BN的Error_curve
TF之BN:BN算法对多层中的每层神经网络加快学习QuadraticFunction_InputData+Histogram+BN的Error_curve
TF之BN:BN算法对多层中的每层神经网络加快学习QuadraticFunction_InputData+Histogram+BN的Error_curve
|
机器学习/深度学习 算法 TensorFlow
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别