神经网络算法——损失函数(Loss Function)

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 神经网络算法——损失函数(Loss Function)

前言

本文将从损失函数的本质、损失函数的原理、损失函数的算法三个方面,详细介绍损失函数Loss Function

损失函数


1、损失函数的本质

(1)机器学习“三板斧”

选择模型家族,定义损失函数量化预测误差,通过优化算法找到最小损失的最优模型参数。

机器学习 VS 人类学习

  • 定义一个函数集合(模型选择)

       目标:确定一个合适的假设空间或模型家族。

       示例:线性回归、逻辑回归、神经网络、决策时等。

       考虑因素:问题的复杂性、数据的性质、计算资源等。

  • 判断函数的好坏(损失函数)

      目标:量化模型预测与真实结果之间的差异。

      示例:均方误差(MSE)用于回归;交叉熵损失用于分类。

       考虑因素:损失的性质(凸性、可微性等)、易于优化、对异常值的鲁棒性等。

  • 选择最好的函数(优化算法)

      目标:在函数集中找到最小化损失函数的模型参数。

      主要方法:梯度下降及其变种(随机梯度下降、批量梯度下降、Adam等)。

       考虑因素:收敛速度、计算效率、参数调整的复杂性等。

(2)损失函数的本质

量化模型预测与真实结果之间的差异。

损失函数的本质

  • 损失函数的概念:

       损失函数用于量化模型预测与真实值之间的差异。

       它是预测值与真实值之间差距的计算方法,并通过深度学习框架(如PyTorch、TensorFlow)进行封装。

  • 损失函数的重要性:

       在机器学习中,目标是使预测值尽可能接近真实值,因此需要通过最小化预测值和真实值之间的差异来实现。

       损失函数的选择对于模型的训练速度和效果至关重要,因为不同的损失函数会导致不同的梯度下降速度。

  • 损失函数的位置:

       损失函数位于机器学习模型的向前传播和向后传播之间。

       在向前传播阶段,模型根据输入特征生成预测值。

       损失函数接收这些预测值,并计算与真实值之间的差异。

       这个差异随后被用于向后传播阶段,以更新模型的参数并减少未来的预测误差。

损失函数的位置

2、损失函数的原理

误差反映单个数据点的预测偏差,损失则是整体数据集的预测偏差总和。损失函数运用这两者原理,聚合误差以优化模型,降低总体预测偏差。

(1)误差(Error)

对单个数据点预测结果与真实值之间的差异,用于评估模型在特定数据点上的预测准确性。

  • 定义:

       误差是指模型在对单个数据点进行预测时,其预测结果与真实值之间的差异或偏离程度。这种差异反映了模型预测的不准确性或偏差。

  • 计算:

       误差可以通过多种数学公式来计算。其中,绝对误差是预测值与真实值之间差值的绝对值,用于量化预测偏离真实值的实际大小;平方误差则是预测值与真实值之间差值的平方,常用于平方损失函数中,以便更显著地突出较大的误差。

  • 误差棒:

       误差棒通常以线条或矩形的形式出现在数据点的上方、下方或两侧,其长度或大小代表了误差的量级。这种可视化方法有助于识别潜在的问题区域,并指导进一步的模型改进或数据分析。

横轴名称

(2)损失(Loss)

损失是衡量机器学习模型在整个数据集上预测不准确性的总体指标,通过最小化损失可以优化模型参数并改进预测性能。

  • 定义:

损失是衡量机器学习模型在整个数据集上预测的总体不准确性的指标。它反映了模型预测与真实值之间的差异,并将这些差异进行聚合,以提供一个标量值来表示预测的总体不准确性

  • 计算:

       损失的具体计算是通过损失函数来完成的。损失函数接受模型的预测值和真实值作为输入,并输出一个标量值,即损失值,表示模型在整个数据集上的总体预测误差。

  • 损失曲线:

       损失曲线直观地呈现了模型在训练过程中损失值的变化趋势。通过绘制训练损失和验证损失随迭代次数的变化,我们能够洞察模型是否遭遇过拟合或欠拟合等问题,进而调整模型结构和训练策略。

损失曲线

3、损失函数的算法

损失函数的算法

(1)均方差损失函数(MSE)

通过计算模型预测值与真实值之间差值的平方的平均值,衡量回归任务中预测结果的准确性,旨在使预测值尽可能接近真实值。

均方差损失函数(MSE)

  • 应用场景:

       主要用于回归问题,即预测连续值的任务。

  • 公式:

均方差损失函数(MSE)公式

  • 特点:

       当预测值接近真实值时,损失值较小。

       当预测值与真实值差距较大时,损失值迅速增大。

       由于其梯度形式简单,易于优化。

  • 优化目标:

       最小化均方差损失,使得模型的预测值尽可能接近真实值。

(2)交叉熵损失函数(CE)

用于衡量分类任务中模型预测的概率分布与真实标签之间的差异,旨在通过最小化损失来使模型预测更加接近真实类别。

交叉熵损失函数(CE)

  • 应用场景:

       主要用于分类问题,尤其是多分类问题。

  • 公式:

交叉熵损失函数(CE)公式

  • 特点:

       当预测概率分布与真实概率分布相近时,损失值较小。

       对预测概率的微小变化非常敏感,尤其当真实标签的概率接近0或1时。

       适用于概率输出的模型,如逻辑回归、softmax分类器等。

  • 优化目标:

       最小化交叉熵损失,使得模型对每个类别的预测概率尽可能接近真实概率分布。

参考:架构师带你玩转AI

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
41 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
27天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
58 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
40 2
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
93 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。

热门文章

最新文章

下一篇
无影云桌面