CTR_GBDT_LR_TEST

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 实战分享:CTR中的GBDT+LR融合方案<br />数据源:internet<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
10月前
|
机器学习/深度学习 监控 数据可视化
训练损失图(Training Loss Plot)
训练损失图(Training Loss Plot)是一种在机器学习和深度学习过程中用来监控模型训练进度的可视化工具。损失函数是衡量模型预测结果与实际结果之间差距的指标,训练损失图展示了模型在训练过程中,损失值随着训练迭代次数的变化情况。通过观察损失值的变化,我们可以评估模型的拟合效果,调整超参数,以及确定合适的训练停止条件。
1539 5
|
3月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
122 2
|
5月前
|
机器学习/深度学习 存储 搜索推荐
GBDT+LR简介
GBDT+LR简介
59 0
|
7月前
|
API 算法框架/工具
【Tensorflow+keras】使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
62 0
【学习】loss图和accuracy
【学习】loss图和accuracy
493 0
criterion = torch.nn.MSELoss() ;loss = criterion(y_pred.squeeze(), Y_train.squeeze()) 其中loss.item()的结果是指当前批次所有样本的mse总和还是平均值?
loss.item()的结果是当前批次所有样本的均方误差(MSE)值,而不是总和。这是因为torch.nn.MSELoss()默认返回的是每个样本的MSE值之和,并且在计算总体损失时通常会将其除以样本数量来得到平均损失。 在代码中,loss = criterion(y_pred.squeeze(), Y_train.squeeze())语句计算了y_pred和Y_train之间的MSE损失,然后通过调用item()方法获取了该批次训练样本的平均MSE损失。如果希望获取该批次训练样本的总MSE损失,可以使用loss.item() * batch_size来计算,其中batch_size是该批次
420 0
sklearn中的cross_val_score交叉验证
sklearn中的cross_val_score交叉验证
173 0
|
机器学习/深度学习
GAN Step By Step -- Step4 CGAN
GAN Step By Step -- Step4 CGAN
GAN Step By Step -- Step4 CGAN
ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测
ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测
ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测
|
机器学习/深度学习
神经网络与深度学习---train_loss和val_loss(test_lost)分析
神经网络与深度学习---train_loss和val_loss(test_lost)分析
2533 2

热门文章

最新文章