TsingtaoAI具身智能高校实训方案通过华为昇腾技术认证

简介: 日前,TsingtaoAI推出“具身智能高校实训解决方案”,基于华为昇思MindSpore框架,通过昇腾兼容性认证。方案旨在高校内实现AI大模型与机器人技术结合,涵盖多模态感知、理解与决策、行动执行及学习反馈四大模块,提升机械臂感知、理解与执行能力,推动智能教育现代化,适用于智能机器人、自动化等领域实践教学。

日前,TsingtaoAI推出的“具身智能高校实训解决方案-从AI大模型+机器人到通用具身智能”基于华为技术有限公司AI框架昇思MindSpore,完成并通过昇腾相互兼容性技术认证。

TsingtaoAI&华为昇腾联合解决方案

本项目“具身智能高校实训解决方案”以实现高校内的AI大模型与机器人技术结合为目标,提供从多模态感知到任务执行及反馈优化的完整架构。基于华为昇腾AI基础设施及昇思MindSpore框架,项目在技术深度、应用广度和创新性方面具有显著优势。架构包含以下四层逻辑模块:

1. 多模态感知层

该层通过融合语音、视觉及触觉数据,实现对物理环境的全面感知:

  • 语音感知:利用如Whisper等自然语言处理模型将语音转化为文本,并解析指令意图。
  • 视觉感知:采用深度相机构建三维环境模型,实现物体识别与空间定位,为任务提供视觉输入。
  • 触觉感知:机械臂末端搭载力矩传感器,实时反馈抓取力,确保动作的安全性与精确性。

2. 多模态理解与决策层

  • 多模态融合:通过华为昇思框架整合语音、视觉及触觉信息,利用如Yi-Large、CogVLM2等大语言模型解析复杂指令(如“将蓝色圆柱放在红色方块旁”),生成可执行的任务规划。
  • 语义理解与推理:多模态信息经深度融合后,形成任务语义与目标坐标描述,指导机械臂操作。

3. 行动执行层

该层完成从指令解析到物理任务执行的闭环:

  • 任务规划与路径生成:通过逆运动学算法将多模态决策转化为机械臂的关节运动指令,利用高精度六自由度机械臂完成任务。
  • 实时调整:结合触觉和视觉反馈,实时优化路径与动作参数,提升任务完成效率与稳定性。

4. 学习反馈层

此层致力于持续提升系统性能:

  • 强化学习与仿真优化:在仿真环境中,通过深度强化学习优化执行策略,使系统不断进化以适应复杂动态环境。
  • 教学数据记录与分析:记录实训中的任务数据,供学生复盘并设计优化方案。

技术创新与应用场景

  1. 技术创新:以大语言模型、3D视觉和多模态感知为核心,结合华为昇腾的高性能AI计算平台,提升机械臂在感知、理解和执行方面的能力。
  2. 应用场景:通过任务分解和多模态数据处理,培养学生对多模态感知和自然语言指令执行的理解,支持本科及研究生在智能机器人、自动化、人工智能等方向的实践教学。

该方案不仅推动了高校智能教育体系的现代化升级,更为行业具身智能技术提供了标准化的实训范式。

目录
相关文章
|
传感器 机器学习/深度学习 人工智能
苏黎世理工最新!maplab2.0:模块化的多模态建图定位框架
将多传感器模态和深度学习集成到同时定位和mapping(SLAM)系统中是当前研究的重要领域。多模态是在具有挑战性的环境中实现鲁棒性和具有不同传感器设置的异构多机器人系统的互操作性的一块垫脚石。借助maplab 2.0,这个多功能的开源平台,可帮助开发、测试新模块和功能,并将其集成到一个成熟的SLAM系统中。
苏黎世理工最新!maplab2.0:模块化的多模态建图定位框架
|
7月前
|
传感器 API Android开发
雷电模拟器防检测工具, 模拟器防检测 伪装手机,安卓模拟器防检测工具
硬件特征检测通过CPUID指令和显卡信息判断虚拟环境110 系统环境检测通过查找模拟器特有文件和进程112
|
Ubuntu
Ubuntu禁止内核自动更新
通过上述步骤,您可以在Ubuntu系统中有效地禁用内核的自动更新。这些步骤包括锁定内核版本、禁用自动更新配置、移除不需要的内核包以及禁用相关的自动更新服务。这样可以确保系统在内核层面保持稳定,避免因内核自动更新导致的不必要问题。
3643 1
|
机器学习/深度学习 PyTorch 调度
内部干货 | 基于华为昇腾910B算力卡的大模型部署和调优-课程讲义
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
5063 13
|
存储 人工智能 运维
AI导购革命:揭秘主动式智能导购AI助手的构建之道
本文基于《主动式智能导购AI助手构建》解决方案的实际部署体验,从引导与文档帮助、解决方案原理与架构理解、百炼大模型及函数计算应用明晰度、生产环境步骤指导四个方面进行了详细评估。指出尽管该方案具有创新性和实用性,但在文档详尽性、技术细节解释及生产环境适应性等方面仍有待提升。通过进一步优化,可增强解决方案的可用性和用户满意度。
434 31
|
C++ 容器
【C++】STL之空间配置器(了解)
【C++】STL之空间配置器(了解)
|
机器学习/深度学习 自然语言处理 安全
【网安专题11.8】14Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
【网安专题11.8】14Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
470 0
|
安全 Java 编译器
switch语句,到底隐藏了多少坑?
在Java编程中,switch语句以简洁高效著称,但也暗藏陷阱。遗忘`break`会导致意外的“贯穿”执行,须在每个case后添加`break`以终止流程。switch表达式的类型有限制,如float和double不被接受,需转换为整数类型或采用其他策略。遗漏`default`子句可能造成逻辑漏洞,应始终考虑不匹配情况以增强代码健壮性。正确运用这些技巧,能让代码更稳健优雅。
466 2
|
Oracle 关系型数据库 MySQL
OceanBase 与传统数据库的对比
【8月更文第31天】随着云计算和大数据技术的发展,分布式数据库因其高扩展性、高可用性和高性能而逐渐成为企业和开发者关注的焦点。在众多分布式数据库解决方案中,OceanBase作为一个由阿里巴巴集团自主研发的分布式数据库系统,以其独特的架构设计和卓越的性能表现脱颖而出。本文将深入探讨OceanBase与其他常见关系型数据库管理系统(如MySQL、Oracle)之间的关键差异,并通过具体的代码示例来展示这些差异。
1569 1
基于6个IGBT的全桥电路simulink建模与仿真
该文主要介绍了基于6个IGBT的全桥电路在MATLAB2022a中的Simulink建模与仿真。文中展示了系统仿真结果的多张图片,并简述了三相全桥逆变器的工作原理,包括电路结构和控制IGBT开关状态的方法。全桥电路应用于变频驱动、逆变器、电动汽车和可再生能源领域,实现高效能量转换和精确控制。通过PWM调制,可适应不同应用需求。