ClickHouse大规模数据导入优化:批处理与并行处理

简介: 【10月更文挑战第27天】在数据驱动的时代,高效的数据导入和处理能力是企业竞争力的重要组成部分。作为一位数据工程师,我在实际工作中经常遇到需要将大量数据导入ClickHouse的需求。ClickHouse是一款高性能的列式数据库系统,非常适合进行大规模数据的分析和查询。然而,如何优化ClickHouse的数据导入过程,提高导入的效率和速度,是我们面临的一个重要挑战。本文将从我个人的角度出发,详细介绍如何通过批处理、并行处理和数据预处理等技术优化ClickHouse的数据导入过程。

在数据驱动的时代,高效的数据导入和处理能力是企业竞争力的重要组成部分。作为一位数据工程师,我在实际工作中经常遇到需要将大量数据导入ClickHouse的需求。ClickHouse是一款高性能的列式数据库系统,非常适合进行大规模数据的分析和查询。然而,如何优化ClickHouse的数据导入过程,提高导入的效率和速度,是我们面临的一个重要挑战。本文将从我个人的角度出发,详细介绍如何通过批处理、并行处理和数据预处理等技术优化ClickHouse的数据导入过程。
1111.png

一、背景介绍

在我们的项目中,每天需要处理和导入大量的日志数据、交易数据等。这些数据通常存储在不同的数据源中,如MySQL数据库、CSV文件、Kafka消息队列等。为了确保数据的实时性和准确性,我们需要一个高效的数据导入方案。ClickHouse凭借其出色的查询性能和高并发处理能力,成为我们首选的数据存储和分析引擎。

二、批处理优化

批处理是指将大量数据分成多个批次,逐批导入到数据库中。这种方式可以减少网络传输开销和数据库的事务管理开销,从而提高导入速度。

1. 使用HTTP接口进行批处理

ClickHouse提供了HTTP接口,可以通过HTTP请求将数据导入到数据库中。我们可以通过编写脚本或使用编程语言来实现批量导入。

import requests
import json

def batch_insert(data):
    url = "http://localhost:8123/?query=INSERT%20INTO%20my_table%20FORMAT%20JSONEachRow"
    headers = {
   'Content-Type': 'application/json'}
    response = requests.post(url, data=json.dumps(data), headers=headers)
    if response.status_code != 200:
        raise Exception(f"Failed to insert data: {response.text}")

# 示例数据
data = [
    {
   "column1": "value1", "column2": "value2"},
    {
   "column1": "value3", "column2": "value4"}
]

batch_insert(data)
2. 使用clickhouse-client命令行工具

clickhouse-client是ClickHouse提供的命令行客户端工具,可以用于执行SQL查询和导入数据。通过编写脚本调用clickhouse-client,可以实现批量导入。

#!/bin/bash

# 示例数据文件(CSV格式)
data_file="data.csv"

# 批量导入数据
cat $data_file | clickhouse-client --query="INSERT INTO my_table FORMAT CSV"

三、并行处理优化

并行处理是指将数据分成多个部分,同时导入到数据库中。这种方式可以充分利用多核处理器的性能,进一步提高导入速度。

1. 使用Python多线程进行并行导入

可以使用Python的多线程库concurrent.futures来实现并行导入。

import concurrent.futures
import requests
import json

def insert_data(data_chunk):
    url = "http://localhost:8123/?query=INSERT%20INTO%20my_table%20FORMAT%20JSONEachRow"
    headers = {
   'Content-Type': 'application/json'}
    response = requests.post(url, data=json.dumps(data_chunk), headers=headers)
    if response.status_code != 200:
        raise Exception(f"Failed to insert data: {response.text}")

def parallel_insert(data, num_threads=4):
    chunk_size = len(data) // num_threads
    chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)]

    with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
        futures = [executor.submit(insert_data, chunk) for chunk in chunks]
        for future in concurrent.futures.as_completed(futures):
            try:
                future.result()
            except Exception as e:
                print(e)

# 示例数据
data = [
    {
   "column1": "value1", "column2": "value2"},
    {
   "column1": "value3", "column2": "value4"},
    # 更多数据...
]

parallel_insert(data, num_threads=4)
2. 使用Spark进行并行导入

Spark是一个强大的大数据处理框架,可以用于并行处理和导入数据。通过Spark的DataFrame API,可以轻松实现数据的并行导入。

from pyspark.sql import SparkSession

spark = SparkSession.builder \
    .appName("ClickHouse Data Import") \
    .master("local[*]") \
    .getOrCreate()

# 读取数据
df = spark.read.format("csv").option("header", "true").load("data.csv")

# 写入ClickHouse
df.write.format("jdbc").options(
    url="jdbc:clickhouse://localhost:8123/default",
    driver="ru.yandex.clickhouse.ClickHouseDriver",
    dbtable="my_table",
    user="default",
    password=""
).mode("append").save()

四、数据预处理优化

数据预处理是指在数据导入之前,对数据进行清洗、转换和优化,以提高导入的效率和质量。

1. 数据清洗

在导入数据之前,可以对数据进行清洗,去除无效或错误的数据。

import pandas as pd

# 读取数据
df = pd.read_csv("data.csv")

# 数据清洗
df = df.dropna()  # 删除空值
df = df[df['column1'] != 'invalid_value']  # 删除无效值

# 导入数据
df.to_sql('my_table', con='clickhouse+http://localhost:8123/default', if_exists='append', index=False)
2. 数据压缩

在传输大量数据时,可以使用数据压缩技术减少网络传输开销。

import gzip
import requests
import json

def compressed_insert(data):
    url = "http://localhost:8123/?query=INSERT%20INTO%20my_table%20FORMAT%20JSONEachRow"
    headers = {
   'Content-Type': 'application/json', 'Content-Encoding': 'gzip'}
    compressed_data = gzip.compress(json.dumps(data).encode('utf-8'))
    response = requests.post(url, data=compressed_data, headers=headers)
    if response.status_code != 200:
        raise Exception(f"Failed to insert data: {response.text}")

# 示例数据
data = [
    {
   "column1": "value1", "column2": "value2"},
    {
   "column1": "value3", "column2": "value4"}
]

compressed_insert(data)

五、总结

通过批处理、并行处理和数据预处理等技术,我们可以显著优化ClickHouse的数据导入过程,提高导入的效率和速度。在实际工作中,这些技术的结合使用可以帮助我们更好地应对大规模数据的挑战,确保数据的实时性和准确性。希望我的经验分享能够对你有所帮助,如果你有任何问题或建议,欢迎随时交流。

目录
相关文章
|
7月前
|
存储 SQL 自然语言处理
ClickHouse查询执行与优化
本文详细介绍了SQL语法扩展、执行计划分析及优化策略,涵盖特殊函数与子句(如`WITH`、`ANY JOIN`)、聚合函数扩展(如`uniqCombined`、`quantileTDigest`)以及执行计划优化技巧。同时深入解析了ClickHouse的索引原理,包括主键索引和跳数索引的工作机制与优化方法。针对查询优化,文章提供了过滤条件下推、分布式查询优化和数据预聚合等策略,并探讨了资源管理与并发控制的核心参数(如`max_memory_usage`、`max_threads`)及队列优先级调度机制,助力高效使用ClickHouse。
|
9月前
|
存储 运维 监控
从 ClickHouse 到 Apache Doris:在网易云音乐日增万亿日志数据场景下的落地
日志数据已成为企业洞察系统状态、监控网络安全及分析业务动态的宝贵资源。网易云音乐引入 Apache Doris 作为日志库新方案,替换了 ClickHouse。解决了 ClickHouse 运维复杂、不支持倒排索引的问题。目前已经稳定运行 3 个季度,规模达到 50 台服务器, 倒排索引将全文检索性能提升7倍,2PB 数据,每天新增日志量超过万亿条,峰值写入吞吐 6GB/s 。
617 5
从 ClickHouse 到 Apache Doris:在网易云音乐日增万亿日志数据场景下的落地
|
10月前
|
机器学习/深度学习 Python
ATom:来自 UAS 大气痕量物质色谱仪(UCATS)的测量数据:大气中氧化亚氮(N2O)、六氟化硫(SF6)、甲烷(CH4)、氢气(H2)、一氧化碳(CO)等数据
UCATS(UAS Chromatograph for Atmospheric Trace Species)是NASA开发的无人机载色谱仪,用于高分辨率测量大气中的痕量气体。ATom任务通过NASA DC-8飞机在全球范围内进行系统采样,涵盖0.2至12公里高度,提供N2O、SF6、CH4、H2、CO、H2O和O3等气体浓度数据。该数据集包含168个ICARTT格式文件,支持大气化学、气候变化及空气质量研究。引用:Elkins et al., 2019, DOI:10.3334/ORNLDAAC/1750。
176 0
|
存储 DataWorks 监控
利用 DataWorks 数据推送定期推播 ClickHouse Query 诊断信息
DataWorks 近期上线了数据推送功能,能够将数据库查询的数据组织后推送到各渠道 (如钉钉、飞书、企业微信及 Teams),除了能将业务数据组织后推送,也能将数据库自身提供的监控数据组织后推送,这边我们就以 ClickHouse 为例,定期推播 ClickHouse 的慢 Query、数据量变化等信息,帮助用户掌握 ClickHouse 状态。
494 6
利用 DataWorks 数据推送定期推播 ClickHouse Query 诊断信息
|
消息中间件 NoSQL Redis
实时计算 Flink版产品使用问题之配置了最大连续失败数不为1,在Kafka的精准一次sink中,如果ck失败了,这批数据是否会丢失
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
分布式计算 运维 DataWorks
MaxCompute产品使用问题之数据如何导出到本地部署的CK
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
187 1
|
JSON NoSQL MongoDB
蓝易云 - mongodb数据如何导入到clickhouse
以上步骤是一种通用的方法,具体的实现可能会根据你的具体需求和数据结构有所不同。
344 1
|
SQL 流计算 API
实时计算 Flink版产品使用合集之ClickHouse-JDBC 写入数据时,发现写入的目标表名称与 PreparedStatement 中 SQL 的表名不一致如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
244 0
|
1月前
|
存储 监控 大数据
探究ClickHouse数据库的Mutation机制
ClickHouse的Mutation机制提供了一种高效的方式来处理大数据集上的修改操作。然而,需要注意的是,由于其异步和资源密集的特性,应当谨慎地进行规划和优化,以确保系统的整体性能。通过合理地使用Mutation操作,可以在保证数据一致性的同时,有效地管理和分析大规模数据集。
140 18
|
4月前
|
存储 监控 分布式数据库
ClickHouse分布式数据库动态伸缩(弹性扩缩容)的实现
实现ClickHouse数据库的动态伸缩需要持续的维护和精细的操作。从集群配置到数据迁移,再到监控和自动化,每一步都要仔细管理以确保服务的可靠性和性能。这些活动可以显著提高应用的响应性和成本效率,帮助业务根据实际需求灵活调整资源分配。
314 10

热门文章

最新文章

推荐镜像

更多
下一篇
oss云网关配置