ClickHouse 数据类型、表引擎与TTL

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: ClickHouse数据类型包括UInt8、Int64等,对应Java的Short、Long等,支持数字、字符串、日期时间、数组、枚举、UUID和IP地址等多种类型。建表时需确定好数据类型,避免后期转换影响效率。不要使用Nullable类型,因其低效。合理设置分区和索引,避免轻量删除和修改操作。表引擎如TinyLog适合小规模数据,MergeTree适用于有序时间序列,ReplacingMergeTree用于替换更新数据,AggregatingMergeTree和SummingMergeTree做聚合计算,CollapsingMergeTree保留最新状态。

@[toc]

数据类型

ClickHouse 数据类型 Java 数据类型 数据范围
UInt8 Short 0 到 255
UInt16 Integer 0 到 65,535
UInt32 Long 0 到 4,294,967,295
UInt64 BigInteger 0 到 18,446,744,073,709,551,615
Int8 Byte -128 到 127
Int16 Short -32,768 到 32,767
Int32 Integer -2,147,483,648 到 2,147,483,647
Int64 Long -9,223,372,036,854,775,808 到 9,223,372,036,854,775,807
Float32 Float 约 ±3.4x10^-38 到 ±3.4x10^38
Float64 Double 约 ±1.7x10^-308 到 ±1.7x10^308
Decimal(p,s) BigDecimal 取决于精度和标度
String String 任意长度的字符串
FixedString(n) String 固定长度的字符串,长度为 n
Date LocalDate 0000-01-01 到 9999-12-31
DateTime LocalDateTime 0000-01-01 00:00:00 到 9999-12-31 23:59:59
DateTime64 Instant 0000-01-01 00:00:00 到 9999-12-31 23:59:59.999999999
Array(T) Array 任意长度的 T 类型数组
Nullable(T) Object (T 或 null) T 类型或 null
Tuple(T1, T2, ...) Object[] 多个类型的元组
Enum8 Enum 8 位枚举值
Enum16 Enum 16 位枚举值
UUID UUID UUID 格式的字符串
IPv4 InetAddress IPv4 地址
IPv6 InetAddress IPv6 地址

注意事项

1.确定数据类型

我们在建表存储数据时,图省事,可能会全部选择 String 类型,但可能在使用时,需要目标列的数值型或者时间类型等,去操作数据时显然会进行数据转换,降低了执行效率,所以在建表时就要确定好对应字段的数据类型,不要后期操作数据时再进行数据类型转换。

2.不要使用 Nullable 空值类型

在 ClickHouse 中,存储 Nullable 列时,需要创建一个额外的文件来单独保存,且无法进行索引,使用起来效率很低。

因此,在有需要使用空值类型的场景时,可以选择使用一个特殊值来进行替换。

3.分区的合理设置

分区建表时,一般按照年月日进行划分,数据量越大,建议分区的粒度也要变大,尽量不要使用过小的粒度来存储数据。

4.索引的合理设置

在 ClickHouse 建表时,必须指定使用的索引列,也就是 order by,通常进入索引列的字段都是充当后期查询时作为 where 筛选条件的列,查询频率的索引列在前。

5.避免使用轻量删除与修改

虽然 ClickHouse 支持删除、修改操作,但小批量的操作会造成 ClickHouse 产生小分区文件,在执行 Merge 合并任务时,压力很大。例如:从数十万条数据中仅仅删除或修改几条数据。

表引擎

ClickHouse 表引擎是一种用于存储和管理数据的方式,它定义了数据在物理存储和查询处理方面的行为。

表引擎决定了数据的存储格式、索引方式、数据分布方式以及查询优化方式等方面。不同的引擎具有不同的特性和适用场景,可以根据数据的特点和应用需求选择合适的引擎来存储和处理数据。

1.TinyLog 引擎

TinyLog 是 ClickHouse 中的一种存储引擎,它专门用于小规模数据的存储和查询。

它将数据以文本文件的形式存储在磁盘上,每个文件对应一个分区,适用于数据量较小的场景,例如开发、测试或小型项目。

创建表

CREATE TABLE tinylog_example
(
    id UInt32,
    name String,
    age UInt8
)
ENGINE = TinyLog;

创建了一个名为 tinylog_example 的表,包含了三个列:id(ID)、name(姓名)和 age(年龄)。指定了引擎为 TinyLog,表明数据将以 TinyLog 引擎的方式存储。

插入数据

INSERT INTO tinylog_example (id, name, age)
VALUES
    (1, 'Alice', 30),
    (2, 'Bob', 25),
    (3, 'Charlie', 35);

查询数据

SELECT * FROM tinylog_example;

image.png

我们也可以进入到本地的磁盘文件中去查看该数据。

进入 ClickHouse 本地数据存储目录(需要切换到 root 用户):

cd  /var/lib/clickhouse/data

image.png

data 目录下的文件夹对应的就是我们创建的库,我上面创建的 tinylog_example 表存储在 test 库下,所以我这里进入到 test 目录中进行查看。

由于 ClickHouse 默认会进行压缩,所以我并不能直接看到:

image.png

2.MergeTree 引擎

用于存储有序的时间序列数据,支持灵活的数据分区和排序,适用于日志数据、传感器数据等场景。

假设我们要存储网站的访问日志数据,我们可以使用 MergeTree 引擎来存储这些数据,并且按照日期进行分区。

创建表

CREATE TABLE log_data
(
    date Date,
    time DateTime,
    user_id UInt32,
    page_visited String,
    duration Float32
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(date)
ORDER BY (date, time, user_id);

创建一个名为 log_data 的表,用于存储网站访问日志数据。数据按照日期进行分区,并且按照日期、时间和用户 ID 进行排序。

插入数据

INSERT INTO log_data (date, time, user_id, page_visited, duration)
VALUES
    ('2024-04-01', '2024-04-01 10:15:00', 123, '/home', 3.5),
    ('2024-04-01', '2024-04-01 10:20:00', 456, '/products', 5.2),
    ('2024-04-02', '2024-04-02 08:30:00', 789, '/about', 2.1);

查询数据

SELECT *
FROM log_data
WHERE date = '2024-04-01';

image.png

查询表的分区信息

SELECT *
FROM system.parts
WHERE database = 'test'
  AND table = 'log_data';

image.png

3.ReplacingMergeTree 引擎

ReplacingMergeTree 引擎是 MergeTree 引擎的变种,支持在插入新数据时自动删除旧数据,适用于周期性更新的数据存储场景。

注意! 它在一些老的 ClickHouse 版本中并不会立即去重,而是在经过一定的周期后才会去重。

在新版中则会立即去重,但不同分区中还是可能存在相同的数据。因为它的去重机制并不是全局的,而是在每个分区内部进行操作的。

假设我们需要存储温度传感器数据,并且定期更新数据以保持最新。我们可以使用 ReplacingMergeTree 引擎来实现自动替换过期数据的功能。

创建表

CREATE TABLE temperature_data
(
    sensor_id UInt32,
    temperature Float32,
    timestamp DateTime
)
ENGINE = ReplacingMergeTree(timestamp)
PRIMARY KEY (sensor_id)
ORDER BY (sensor_id);

创建一个名为 temperature_data 的表,用于存储温度传感器数据。数据将按照传感器 ID 进行排序,只保留时间戳最大的值。

ReplacingMergeTree(timestamp) 中的参数 (timestamp) 可以不指定。在有重复列的情况下,会根据 ORDER BY 默认保留重复列中最后插入的那行数据。

插入数据

INSERT INTO temperature_data (sensor_id, temperature, timestamp)
VALUES
    (1, 23.5, '2024-04-01 12:00:00'),
    (2, 21.8, '2024-04-01 12:00:00'),
    (1, 24.3, '2024-04-01 12:15:00'),
    (2, 22.1, '2024-04-01 12:15:00');

查询数据

SELECT * FROM temperature_data;

image.png

查询出来,可能会出现并没有去重成功的情况,这是因为使用的 ClickHouse 是老版本的,在插入数据时不会立即去重。

此时,我们可以手动执行合并任务:

OPTIMIZE TABLE temperature_data FINAL;

合并任务执行完成后,我们再次查询:

image.png

可以看到,已经成功的完成了去重操作,并且在 ID 相同的情况下,保留了时间戳最大的数据。

4.AggregatingMergeTree 引擎

该引擎继承自 MergeTree,改变了数据部分合并的逻辑。

ClickHouse 将具有相同主键(或更准确地说,具有相同排序键)的所有行替换为存储聚合函数状态组合的单行(在一个数据部分内)。

假设我们有一个名为 website_logs 的表,用于存储网站访问日志数据,并且实时计算每小时的访问量。

创建表

CREATE TABLE website_logs(
    date Date,
    hour UInt8,
    visits UInt32
)
ENGINE = AggregatingMergeTree
PARTITION BY toYYYYMM(date)
ORDER BY (date, hour);

插入数据

INSERT INTO website_logs (date, hour, visits)
VALUES
    ('2024-04-01', 0, 100),
    ('2024-04-01', 1, 150),
    ('2024-04-01', 2, 200),
    ('2024-04-01', 3, 180),
    ('2024-04-01', 4, 220),
    ('2024-04-01', 5, 250),
    ('2024-04-01', 6, 300),
    ('2024-04-01', 7, 280),
    ('2024-04-01', 8, 320),
    ('2024-04-01', 9, 350),
    ('2024-04-01', 10, 380),
    ('2024-04-01', 11, 400),
    ('2024-04-01', 12, 420),
    ('2024-04-01', 13, 450),
    ('2024-04-01', 14, 480),
    ('2024-04-01', 15, 500),
    ('2024-04-01', 16, 520),
    ('2024-04-01', 17, 550),
    ('2024-04-01', 18, 580),
    ('2024-04-01', 19, 600),
    ('2024-04-01', 20, 620),
    ('2024-04-01', 21, 640),
    ('2024-04-01', 22, 660),
    ('2024-04-01', 23, 680);

查询数据

SELECT *
FROM website_logs
ORDER BY date, hour;

image.png

5.SummingMergeTree 引擎

SummingMergeTree 引擎用于对相同主键的行进行聚合,在插入新数据时对相同主键的行进行求和。

假设我们要存储每天的销售数据,并计算每种产品的总销售额。

创建表

CREATE TABLE sales_data
(
    date Date,
    product_id UInt32,
    sales_amount Float32
)
ENGINE = SummingMergeTree
PARTITION BY toYYYYMM(date)
ORDER BY (date, product_id);

创建了一个名为 sales_data 的表,用于存储销售数据。表包含了三个列:date(日期)、product_id(产品 ID)和 sales_amount(销售额)。

数据将按照日期和产品 ID 进行分区(这里相当于 date, product_id 是联合主键),并且按照日期和产品 ID 排序。

插入数据

INSERT INTO sales_data (date, product_id, sales_amount)
VALUES
    ('2024-04-01', 1, 100.50),
    ('2024-04-01', 2, 150.75),
    ('2024-04-01', 3, 200.25),
    ('2024-04-01', 1, 120.80),
    ('2024-04-01', 2, 180.60),
    ('2024-04-01', 3, 220.40);

查询数据

SELECT * FROM sales_data;

image.png

可以看到,即使我们插入了多行数据,但是因为其中包含 date, product_id(联合主键)相同的数据,所以它会自动合并(求和计算)除主键外的所有数值列。

6.CollapsingMergeTree 引擎

用于在插入新数据时折叠(合并)相同主键的行,并且保留最新的行。适用于存储以事件时间为主要维度的数据流,并保留最新的状态。

假设我们要存储用户在网站上的访问记录,并且保留每个用户的最新访问信息。

创建表:

CREATE TABLE user_visits
(
    user_id UInt32,
    visit_time DateTime,
    url String,
    is_active Int8
)
ENGINE = CollapsingMergeTree(is_active)
PARTITION BY toYYYYMM(visit_time)
ORDER BY (user_id, visit_time);

创建了一个名为 user_visits 的表,用于存储用户访问记录。表包含了四个列:user_id(用户 ID)、visit_time(访问时间)、url(访问的网址)和 is_active(活跃标志)。数据将按照访问时间和用户 ID 进行分区,并且按照用户 ID 和访问时间排序。

在创建表时,我们指定了 CollapsingMergeTree(is_active),表示当插入新数据时,如果有相同主键的行(在这里是相同的 user_id),ClickHouse 将根据 is_active 列的值来选择保留哪一行,只保留 is_active 最大的行。

插入数据

INSERT INTO user_visits (user_id, visit_time, url, is_active)
VALUES
    (1, '2024-04-01 10:00:00', '/page1', 1),
    (2, '2024-04-01 10:05:00', '/page2', 1),
    (1, '2024-04-01 10:10:00', '/page3', -1),
    (3, '2024-04-01 10:15:00', '/page4', 1),
    (2, '2024-04-01 10:20:00', '/page5', -1),
    (1, '2024-04-01 10:25:00', '/page6', 1);

查询数据:

SELECT *
FROM user_visits
ORDER BY user_id, visit_time;

image.png

可以看到,它并未进行合并操作,这是因为 ClickHouse 还没有合并数据,它在一个我们无法预料的未知时刻合并数据片段。

此时,我们可以手动执行合并任务,添加关键字 FINAL 强制进行合并:

SELECT *
FROM user_visits FINAL
ORDER BY user_id, visit_time;

image.png

它只会保留当前分区内 is_active 最大的行,最大值一样会保存多行。

7.Distributed 引擎

用于在多个 ClickHouse 节点上分布存储数据,并且实现数据的分片存储和并行查询处理,适用于构建分布式数据仓库和实时分析系统。

假设我们有多个 ClickHouse 节点,我们要在这些节点上分布存储数据,并且进行查询操作。

创建分布式表

CREATE TABLE distributed_log_data
(
    date Date,
    time DateTime,
    user_id UInt32,
    page_visited String,
    duration Float32
)
ENGINE = Distributed('cluster_name', 'default', 'log_data', rand());

创建一个名为 distributed_log_data 的分布式表,将数据分布在名为 cluster_name 的 ClickHouse 集群上,并且将数据存储在名为 log_data 的本地表中。

插入数据

INSERT INTO distributed_log_data (date, time, user_id, page_visited, duration)
VALUES
    ('2024-04-01', '2024-04-01 10:15:00', 123, '/home', 3.5),
    ('2024-04-01', '2024-04-01 10:20:00', 456, '/products', 5.2),
    ('2024-04-02', '2024-04-02 08:30:00', 789, '/about', 2.1);

查询数据

SELECT *
FROM distributed_log_data
WHERE date = '2024-04-01';

TTL

TTL(Time to Live)是一种数据管理机制,在 ClickHouse 中,TTL 机制允许你为表中的数据设置生命周期,以控制数据的存储时间。你可以为表中的某个列设置 TTL,指定数据的存储时间,一旦数据的时间戳超过了 TTL 设置的时间,数据将被自动删除。

列级 TTL

注意,列级 TTL 功能只有在 ClickHouse 21.10 版本及以上才能使用,低版本会失效。

创建表并为指定字段设置 TTL

CREATE TABLE ttl_example_col
(
    d DateTime DEFAULT now(),
    a Int TTL d + INTERVAL 10 SECOND,
    b Int TTL d + INTERVAL 10 SECOND,
    c String
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(d)
ORDER BY d;

在这里,为 ab 字段设置了 TTL,指定了该列数据的存储时间为插入时间后的 10 秒,超过就会被自动清除。

如果表已经存在,那么可以通过修改表字段的方式进行添加:

ALTER TABLE ttl_example_col
MODIFY COLUMN a Int32 TTL d + INTERVAL 10 SECOND,
MODIFY COLUMN b String TTL d + INTERVAL 10 SECOND;

插入测试数据

INSERT INTO ttl_example_col (a, b, c) VALUES(10, 20, 'Data1'),(15, 25, 'Data2'),(20, 30, 'Data3');

插入后,立即进行查询:

SELECT * FROM ttl_example_col;

image.png

等待一分钟后,再次查询,验证数据是否过期,这里需要我们手动进行合并,因为 ClickHouse 默认合并需要等很久。

OPTIMIZE TABLE ttl_example_col FINAL;

再次查询,此时如果你使用的 ClickHouse 版本是 21.10 以下,那么会不生效,如果是 21.10 版本及以上,则可以生效。

各位可以去 ClickHouse 的在线测试平台选择版本进行测试 —— ClickHouse Playground

这里提供完整的 SQL 测试代码:

CREATE TABLE ttl_example_col
(
    d DateTime DEFAULT now(),
    a Int TTL d + INTERVAL 10 SECOND,
    b Int TTL d + INTERVAL 10 SECOND,
    c String
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(d)
ORDER BY d;

INSERT INTO ttl_example_col (a, b, c) VALUES(10, 20, 'Data1'),(15, 25, 'Data2'),(20, 30, 'Data3');

SELECT * FROM ttl_example_col;

SELECT sleep(3);
SELECT sleep(3);
SELECT sleep(3);
SELECT sleep(3);

OPTIMIZE TABLE ttl_example_col FINAL; 

SELECT * FROM ttl_example_col;

使用 21.10 及以上版本运行结果 —— 成功:

image.png

使用 21.10 以下版本运行结果 —— 失败:

image.png

整个网上都没有人探讨这个问题,博主我也是踩了好久坑,一个一个版本测试出来的,一度以为是我本地 ClickHouse 的问题。

官网中也并没有提到哪些版本可以使用列级 TTL

image.png

表级TTL

整表设置 TTL 时,并没有出现因版本不同导致 TTL 失效的问题。

创建带有 TTL 的表

CREATE TABLE ttl_example
(
    id UInt32,
    name String,
    age UInt8,
    insertion_time DateTime DEFAULT now()
) 
ENGINE = MergeTree
ORDER BY id
TTL insertion_time + INTERVAL 1 MINUTE;

在这个示例中,我们创建了一个名为 ttl_example 的表,包含了 idnameageinsertion_time 四个列。我们通过 TTL 子句为表设置了 TTL,指定了数据的存储时间为插入时间后的 1 分钟,超过就会被自动删除。

如果表已经存在,同样也可以使用修改的方式添加:

ALTER TABLE ttl_example MODIFY TTL insertion_time + INTERVAL 1 MINUTE;

插入测试数据

INSERT INTO ttl_example (id, name, age) VALUES
    (1, 'Alice', 30),
    (2, 'Bob', 25),
    (3, 'Charlie', 35);

插入后,同样的,立即进行查询:

SELECT * FROM ttl_example;

image.png

测试 TTL 机制

等待 1 分钟后,执行查询操作,可以观察到超过 TTL 时间的数据将会被自动删除:

SELECT * FROM ttl_example;

image.png

在等待 TTL 时间过去后,我们可以观察到超过 TTL 时间的数据会被自动删除,从而实现了数据的自动清理。

相关文章
|
2月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
58 0
|
1月前
|
存储 缓存 大数据
ClickHouse核心概念详解:表引擎与数据模型
【10月更文挑战第26天】在大数据时代,数据处理的速度和效率变得至关重要。ClickHouse,作为一个列式存储数据库系统,以其高效的查询性能和强大的数据处理能力而受到广泛欢迎。本文将从我个人的角度出发,详细介绍ClickHouse的核心概念,特别是其表引擎和数据模型,以及这些特性如何影响数据的存储和查询。
57 1
|
2月前
|
存储 SQL 分布式计算
大数据-139 - ClickHouse 集群 表引擎详解4 - MergeTree 实测案例 ReplacingMergeTree SummingMergeTree
大数据-139 - ClickHouse 集群 表引擎详解4 - MergeTree 实测案例 ReplacingMergeTree SummingMergeTree
35 0
|
2月前
|
存储 算法 NoSQL
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
41 0
|
2月前
|
存储 消息中间件 分布式计算
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
42 0
|
2月前
|
存储 分布式计算 NoSQL
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
58 0
|
2月前
|
存储 SQL 分布式计算
大数据-135 - ClickHouse 集群 - 数据类型 实际测试
大数据-135 - ClickHouse 集群 - 数据类型 实际测试
43 0
|
6月前
|
SQL NoSQL 关系型数据库
ClickHouse(24)ClickHouse集成mongodb表引擎详细解析
**MongoDB引擎在ClickHouse中提供只读访问远程数据,用于`SELECT`查询。不支持写入。创建MongoDB表引擎的语法:`CREATE TABLE ... ENGINE = MongoDB(host, db, coll, user, pass)`。例如:**查看[ClickHouse中文文档](https://zhangfeidezhu.com/?p=468)获取更多教程,包括系列文章覆盖的各种表引擎解析。
162 0
|
6月前
|
SQL 关系型数据库 MySQL
ClickHouse(23)ClickHouse集成Mysql表引擎详细解析
ClickHouse的MySQL引擎允许执行`SELECT`查询从远程MySQL服务器。使用`MySQL('host:port', 'database', 'table', 'user', 'password'[,...])`格式连接,支持简单`WHERE`子句在MySQL端处理,复杂条件和`LIMIT`在ClickHouse端执行。不支持`NULL`值,用默认值替换。系列文章涵盖ClickHouse安装、集群搭建、表引擎解析等主题。[链接](https://zhangfeidezhu.com/?p=468)有更多
276 0
|
6月前
|
SQL 分布式计算 安全
ClickHouse(22)ClickHouse集成HDFS表引擎详细解析
ClickHouse的HDFS引擎允许直接在Hadoop生态系统内管理数据。使用`ENGINE=HDFS(URI, format)`,其中URI指定HDFS路径,format定义文件格式(如TSV、CSV或ORC)。表可读写,但不支持`ALTER`、`SELECT...SAMPLE`、索引和复制操作。通配符可用于文件路径,如`*`、`?`和范围`{N..M}`。Kerberos认证可配置。虚拟列包括文件路径 `_path` 和文件名 `_file`。有关更多信息,参见相关文章系列。
169 0
下一篇
DataWorks