Jetson学习笔记(二):TensorRT 查看模型的输入输出

简介: 这篇博客介绍了如何使用TensorRT查看模型的输入输出,并通过代码示例展示了如何获取和验证模型的输入输出信息。

通过下面代码运行即可

import tensorrt as trt

def get_engine(engine_path):
    # If a serialized engine exists, use it instead of building an engine.
    print("Reading engine from file {}".format(engine_path))
    with open(engine_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
        return runtime.deserialize_cuda_engine(f.read())

TRT_LOGGER = trt.Logger()
# engine = get_engine("yolov4_1.trt")

engine = get_engine("./models/face_reg_mnet.engine")
for binding in engine:
        size = trt.volume(engine.get_binding_shape(binding)) * 1
        dims = engine.get_binding_shape(binding)
        print('***',size)
        print('*****',dims)
        print('***********',binding)
        print("input =", engine.binding_is_input(binding))
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # print("dtype = ", dtype)

输出结果:
在这里插入图片描述

目录
相关文章
|
6月前
|
机器学习/深度学习 并行计算 测试技术
MLX vs MPS vs CUDA:苹果新机器学习框架的基准测试
如果你是一个Mac用户和一个深度学习爱好者,你可能希望在某些时候Mac可以处理一些重型模型。苹果刚刚发布了MLX,一个在苹果芯片上高效运行机器学习模型的框架。
314 1
|
1月前
|
PyTorch 算法框架/工具
Jetson学习笔记(四):pth(torch模型文件)转trt(tensorrt引擎文件)实操
关于如何使用torch2trt工具将PyTorch模型转换为TensorRT引擎文件的实操指南。
44 1
Jetson学习笔记(四):pth(torch模型文件)转trt(tensorrt引擎文件)实操
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
83 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
1月前
|
并行计算 API C++
Nvidia TensorRT系列01-TensorRT的功能1
NVIDIA TensorRT是一个高性能深度学习推理优化器和运行时,支持C++和Python API。其编程模型分为构建阶段和运行时阶段,前者优化模型,后者执行推理。TensorRT支持多种数据类型和精度,包括FP32、FP16、INT8等,并提供插件机制以扩展支持的操作。
59 0
|
机器学习/深度学习 人工智能 计算机视觉
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
594 0
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
|
机器学习/深度学习 并行计算 计算机视觉
|
缓存 计算机视觉
|
机器学习/深度学习 人工智能 自动驾驶
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(下)
今天自动驾驶之心很荣幸邀请到逻辑牛分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(下)
|
机器学习/深度学习 存储 人工智能
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(上)
今天自动驾驶之心很荣幸邀请到逻辑牛分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(上)
|
机器学习/深度学习 TensorFlow 调度
YOLOV5 v6.1更新 | TensorRT+TPU+OpenVINO+TFJS+TFLite等平台一键导出和部署
YOLOV5 v6.1更新 | TensorRT+TPU+OpenVINO+TFJS+TFLite等平台一键导出和部署
244 0