深度学习之格式转换笔记(二):CKPT 转换成 PB格式文件

简介: 将TensorFlow的CKPT模型格式转换为PB格式文件,包括保存模型的代码示例和将ckpt固化为pb模型的详细步骤。

我们使用tf.train.saver()保存模型时会产生多个文件,也就是说把计算图的结构和图上参数取值分成了不同的文件存储。这也是在tensorflow中常用的保存方式。

保存文件的代码:

import tensorflow as tf
# 声明两个变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")
v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")
init_op = tf.global_variables_initializer() # 初始化全部变量
saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型
with tf.Session() as sess:
    sess.run(init_op)
    print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比
    print("v2:", sess.run(v2))
    saver_path = saver.save(sess, "save/model.ckpt-510")  # 将模型保存到save/model.ckpt-510文件
    print("Model saved in file:", saver_path)

这时候我们就可以看到结果
在这里插入图片描述
其中

  • checkpoint:检查点文件,文件保存了一个目录下所有的模型文件列表;
  • model.ckpt-510.meta:保存了TensorFlow计算图的结构,可以理解为神经网络的网络结构,该文件可以被
    tf.train.import_meta_graph 加载到当前默认的图来使用。
  • ckpt-510.data : 保存模型中每个变量的取值
  • ckpt-510.index:可能是内部需要的某种索引来正确映射前两个文件,它通常不是必需的

真正部署的时候,一般人家不会给你ckpt模型的,而是固化成pb模型以后再给你用,现在我们就来看看怎么将ckpt固化成pb模型。

实际完整代码:

# -*-coding: utf-8 -*-
import os
import tensorflow as tf
from create_tf_record import *
from tensorflow.python.framework import graph_util

resize_height = 299  # 指定图片高度
resize_width = 299  # 指定图片宽度
depths = 3

def freeze_graph_test(pb_path, image_path):
    '''
    :param pb_path:pb文件的路径
    :param image_path:测试图片的路径
    :return:
    '''
    with tf.Graph().as_default():
        output_graph_def = tf.GraphDef()
        with open(pb_path, "rb") as f:
            output_graph_def.ParseFromString(f.read())
            tf.import_graph_def(output_graph_def, name="")
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())

            # 定义输入的张量名称,对应网络结构的输入张量,往往是通过tf.placeholder调用的。
            # input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
            input_image_tensor = sess.graph.get_tensor_by_name("input:0")
            input_keep_prob_tensor = sess.graph.get_tensor_by_name("keep_prob:0")
            input_is_training_tensor = sess.graph.get_tensor_by_name("is_training:0")

            # 定义输出的张量名称
            output_tensor_name = sess.graph.get_tensor_by_name("InceptionV3/Logits/SpatialSqueeze:0")

            # 读取测试图片
            im = read_image(image_path, resize_height, resize_width, normalization=True)
            im = im[np.newaxis, :]
            # 测试读出来的模型是否正确,注意这里传入的是输出和输入节点的tensor的名字,不是操作节点的名字
            # out=sess.run("InceptionV3/Logits/SpatialSqueeze:0", feed_dict={'input:0': im,'keep_prob:0':1.0,'is_training:0':False})
            out = sess.run(output_tensor_name, feed_dict={input_image_tensor: im,
                                                          input_keep_prob_tensor: 1.0,
                                                          input_is_training_tensor: False})
            print("out:{}".format(out))
            score = tf.nn.softmax(out, name='pre')
            class_id = tf.argmax(score, 1)
            print(
            "pre class_id:{}".format(sess.run(class_id)))

def freeze_graph(input_checkpoint, output_graph):
    '''
    :param input_checkpoint:
    :param output_graph: PB模型保存路径
    :return:
    '''
    # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    output_node_names = "InceptionV3/Logits/SpatialSqueeze"
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)  # 恢复图并得到数据
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=sess.graph_def,  # 等于:sess.graph_def
            output_node_names=output_node_names.split(","))  # 如果有多个输出节点,以逗号隔开

        with tf.gfile.GFile(output_graph, "wb") as f:  # 保存模型
            f.write(output_graph_def.SerializeToString())  # 序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node))  # 得到当前图有几个操作节点

        # for op in sess.graph.get_operations():
        #     print(op.name, op.values())

def freeze_graph2(input_checkpoint, output_graph):
    '''
    :param input_checkpoint:
    :param output_graph: PB模型保存路径
    :return:
    '''
    # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
    # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    output_node_names = "InceptionV3/Logits/SpatialSqueeze"
    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
    graph = tf.get_default_graph()  # 获得默认的图
    input_graph_def = graph.as_graph_def()  # 返回一个序列化的图代表当前的图

    with tf.Session() as sess:
        saver.restore(sess, input_checkpoint)  # 恢复图并得到数据
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=input_graph_def,  # 等于:sess.graph_def
            output_node_names=output_node_names.split(","))  # 如果有多个输出节点,以逗号隔开

        with tf.gfile.GFile(output_graph, "wb") as f:  # 保存模型
            f.write(output_graph_def.SerializeToString())  # 序列化输出
        print("%d ops in the final graph." % len(output_graph_def.node))  # 得到当前图有几个操作节点

        # for op in graph.get_operations():
        #     print(op.name, op.values())

if __name__ == '__main__':
    # 输入ckpt模型路径
    input_checkpoint = 'D:/pycharm/CarPlateIdentity-master/carIdentityData/model1/char_recongnize/model.ckpt-510'
    # 输出pb模型的路径
    out_dirpath = 'D:/pycharm/CarPlateIdentity-master/carIdentityData/model1/char_recongnize/pb/'
    os.makedirs(os.path.dirname(out_dirpath),exist_ok=True)
    out_pb_path = out_dirpath+"frozen_model.pb"
    # 调用freeze_graph将ckpt转为pb
    freeze_graph(input_checkpoint, out_pb_path)
    print("the success cover")
    # 测试pb模型
    # image_path = 'test_image/animal.jpg'
    # freeze_graph_test(pb_path=out_pb_path, image_path=image_path)

在将ckpt转换为pd过程中,会依据输出节点来丢弃那些与输出节点无关的参数,只保留与输出节点存在上下文关系的参数,这也就是生成pd文件的意义所在,即通过减少参数量降低模型的大小,所以在生成pd的过程中需要明确指定输出节点是谁,这样才能确定其依赖的需要固化的上下文参数。

目录
相关文章
|
2天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1517 4
|
29天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
5天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
483 17
|
2天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
179 1
|
8天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
21天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
8天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
442 4
|
7天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
313 2
|
23天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
25天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2608 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析