大模型中 .safetensors 文件、.ckpt文件、.gguf和.pth以及.bin文件区别、加载和保存以及转换方式

简介: 本文讨论了大模型中不同文件格式如`.safetensors`、`.ckpt`、`.gguf`、`.pth`和`.bin`的区别、用途以及如何在TensorFlow、PyTorch和ONNX等框架之间进行加载、保存和转换。

在大模型中,.safetensors.ckpt.gguf.pth.bin 文件都是用于保存和加载模型参数的文件格式,它们之间的区别和转换方式如下:

  1. .safetensors 文件:

    • 这是 TensorFlow 2.x 中新增的文件格式,用于保存模型参数和优化器状态。
    • 它采用的是 TensorFlow 的自定义序列化格式,不能直接用于其他框架。
    • 可以使用 TensorFlow 的 tf.train.Checkpoint 类来加载和保存 .safetensors 文件。
  2. .ckpt 文件:

    • 这是 TensorFlow 1.x 中用于保存模型参数和优化器状态的文件格式。
    • 它采用的是 TensorFlow 的自定义序列化格式,不能直接用于其他框架。
    • 可以使用 TensorFlow 的 tf.train.Saver 类来加载和保存 .ckpt 文件。
    • 可以使用 TensorFlow 2.x 的 tf.compat.v1.train.Saver 类来加载和保存 .ckpt 文件。
  3. .gguf 文件:

    • 这是 Google 的 GFST(Google Finite State Transducer)格式,用于保存语言模型。
    • 它采用的是 Google 的自定义序列化格式,不能直接用于其他框架。
    • 可以使用 Google 的 fstcompilefstrain 工具来加载和保存 .gguf 文件。
  4. .pth 文件:

    • 这是 PyTorch 中用于保存模型参数和优化器状态的文件格式。
    • 它采用的是 PyTorch 的自定义序列化格式,不能直接用于其他框架。
    • 可以使用 PyTorch 的 torch.save 函数来加载和保存 .pth 文件。
  5. .bin 文件:

    • 这是一种通用的二进制文件格式,可以用于保存模型参数和优化器状态。
    • 它可以被多种框架所使用,例如 TensorFlow、PyTorch 和 ONNX 等。
    • 可以使用 NumPy 或 PyTorch 等框架的函数来加载和保存 .bin 文件。

对于这些文件格式之间的转换,可以使用以下方法:

  1. .ckpt 文件到 .pth 文件:

    • 可以使用 TensorFlow 2.x 的 tf.compat.v1.train.Saver 类来加载 .ckpt 文件,然后使用 PyTorch 的 torch.Tensor.cpu 函数将模型参数转换为 CPU 张量,最后使用 PyTorch 的 torch.save 函数保存为 .pth 文件。
  2. .pth 文件到 .ckpt 文件:

    • 可以使用 PyTorch 的 torch.load 函数加载 .pth 文件,然后使用 TensorFlow 2.x 的 tf.convert_to_tensor 函数将模型参数转换为 TensorFlow 张量,最后使用 TensorFlow 2.x 的 tf.train.Checkpoint 类保存为 .ckpt 文件。
  3. .ckpt 文件或 .pth 文件到 ONNX 模型:

    • 可以使用 TensorFlow 2.x 的 tf2onnx.convert 函数或 PyTorch 的 torch.onnx.export 函数将模型转换为 ONNX 模型,然后使用 ONNX 的 onnxruntime.InferenceSession 类加载和使用 ONNX 模型。
  4. ONNX 模型到 .pth 文件或 .ckpt 文件:

    • 可以使用 ONNX 的 onnxruntime.InferenceSession 类加载 ONNX 模型,然后使用 PyTorch 的 torch.Tensor 或 TensorFlow 2.x 的 tf.convert\_to\_tensor 函数将模型参数转换为 PyTorch 或 TensorFlow 张量,最后使用 PyTorch 的 torch.save 函数或 TensorFlow 2.x 的 tf.train.Checkpoint 类保存为 .pth 文件或 .ckpt 文件。
  5. .gguf 文件到 ONNX 模型:

    • 可以使用 Google 的 fst2onnx 工具将 .gguf 文件转换为 ONNX 模型,然后使用 ONNX 的 onnxruntime.InferenceSession 类加载和使用 ONNX 模型。
  6. ONNX 模型到 .gguf 文件:

    • 可以使用 ONNX 的 onnxruntime.InferenceSession 类加载 ONNX 模型,然后使用 Google 的 onnx2fst 工具将 ONNX 模型转换为 .gguf 文件。

需要注意的是,由于不同框架之间的 API 和序列化格式的差异,在进行转换时可能需要进行一些额外的处理,例如调整数据类型、调整形状、调整维度等。

目录
相关文章
|
文字识别 并行计算 语音技术
ModelScope问题之下载模型文件报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
3505 3
|
存储 缓存 异构计算
大语言模型量化方法对比:GPTQ、GGUF、AWQ
在过去的一年里,大型语言模型(llm)有了飞速的发展,在本文中,我们将探讨几种(量化)的方式,除此以外,还会介绍分片及不同的保存和压缩策略。
6054 0
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
20441 71
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(二):CKPT 转换成 PB格式文件
将TensorFlow的CKPT模型格式转换为PB格式文件,包括保存模型的代码示例和将ckpt固化为pb模型的详细步骤。
301 2
深度学习之格式转换笔记(二):CKPT 转换成 PB格式文件
|
存储 机器学习/深度学习 人工智能
【AI大模型】Transformers大模型库(十六):safetensors存储类型
【AI大模型】Transformers大模型库(十六):safetensors存储类型
1615 0
|
开发者 异构计算
现在,一行命令使用Ollama运行任意魔搭GGUF模型
为了让开发者更方便地把这些模型用起来,社区最近支持了Ollama框架和ModelScope平台的链接,通过简单的 ollama run命令,就能直接加载运行ModelScope模型库上的GGUF模型。
|
12月前
|
搜索推荐 物联网 PyTorch
Qwen2.5-7B-Instruct Lora 微调
本教程介绍如何基于Transformers和PEFT框架对Qwen2.5-7B-Instruct模型进行LoRA微调。
12291 34
Qwen2.5-7B-Instruct Lora 微调
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
599 4
【AI系统】模型转换基本介绍

热门文章

最新文章