数据变形记:Python转换技巧大公开,轻松玩转数据魔方!

简介: 在数据处理领域,数据变形是连接原始数据与洞察的桥梁。本文通过电商用户购买行为数据集的案例,展示了Python强大的数据处理能力。我们将购买日期转换为日期类型,计算每位用户的总花费,并对商品价格应用折扣,最终将杂乱的数据转化为有序、有价值的信息。通过Pandas库,我们实现了从简单类型转换到复杂数值计算的全过程,揭示了数据变形的无限可能。

在数据处理的浩瀚宇宙中,数据变形(Data Transformation)是连接原始数据与洞察之间不可或缺的桥梁。它如同魔术师手中的魔杖,能将杂乱无章的数据点转化为有序、有价值的信息宝库。今天,就让我们一起揭开Python转换技巧的神秘面纱,通过一个生动的案例分析,体验数据变形带来的魔力。

案例背景
假设我们是一家电商公司的数据分析师,手头上有一份关于用户购买行为的数据集。这份数据集包含了用户的ID、购买日期、商品ID、商品价格等信息,但格式并不统一,且部分数据需要进一步处理才能用于分析。我们的目标是:

将购买日期从字符串转换为日期类型。
计算每个用户的购买总金额。
将商品价格转换为折扣后的价格(假设所有商品均有10%的折扣)。
Python转换技巧大公开
步骤一:数据导入与预览
首先,我们使用Pandas库来加载数据。

python
import pandas as pd

假设数据文件名为'purchases.csv'

data = pd.read_csv('purchases.csv')
print(data.head())
步骤二:日期类型转换
接下来,将购买日期从字符串转换为Pandas的日期时间类型,这有助于我们后续进行时间序列分析。

python
data['Purchase_Date'] = pd.to_datetime(data['Purchase_Date'])
print(data['Purchase_Date'].dtype) # 验证转换结果
步骤三:计算购买总金额
为了了解每个用户的消费能力,我们需要计算每个用户的购买总金额。这涉及到分组和聚合操作。

python

按用户ID分组,并计算每个用户的购买总金额

total_spending = data.groupby('User_ID')['Price'].sum().reset_index()
print(total_spending)
步骤四:商品价格折扣计算
现在,我们来给所有商品应用10%的折扣,并更新数据集中的价格字段。

python

计算折扣后的价格

data['Discounted_Price'] = data['Price'] * 0.9

查看更新后的数据集

print(data[['User_ID', 'Product_ID', 'Price', 'Discounted_Price']].head())
结语
通过上述案例,我们见证了Python如何以其强大的数据处理能力,将原始数据逐步转化为具有分析价值的信息。从简单的日期类型转换,到复杂的分组聚合与数值计算,Python为我们提供了一套高效、灵活的工具集。数据变形,不仅仅是数据形式的转变,更是从数据中挖掘价值、洞察未来的关键步骤。希望这篇文章能激发你对数据处理的热情,让你在数据魔方的世界里畅游无阻!

相关文章
|
25天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
10天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
20 1
|
11天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
11天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
49 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
1月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
41 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
23天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
52 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2
|
10天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
19 0
|
1月前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第10天】本文介绍了OAuth 2.0和JSON Web Tokens (JWT) 两种现代Web应用中最流行的认证机制。通过使用Flask-OAuthlib和PyJWT库,详细展示了如何在Python环境中实现这两种认证方式,从而提升系统的安全性和开发效率。OAuth 2.0适用于授权过程,JWT则简化了认证流程,确保每次请求的安全性。结合两者,可以构建出既安全又高效的认证体系。
43 1