NumPy 教程 之 NumPy 副本和视图 5

简介: 副本是数据的完整拷贝,修改副本不会影响原始数据;而视图则是数据的别称,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生,副本则通过切片操作、`deepCopy()`或`copy()`函数生成。示例展示了如何使用`copy()`创建副本,并验证修改副本后原始数据保持不变。

NumPy 教程 之 NumPy 副本和视图 5

NumPy 副本和视图

副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。

视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。

视图一般发生在:

1、numpy 的切片操作返回原数据的视图。
2、调用 ndarray 的 view() 函数产生一个视图。

副本一般发生在:

Python 序列的切片操作,调用deepCopy()函数。
调用 ndarray 的 copy() 函数产生一个副本。

副本或深拷贝

ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

实例

import numpy as np

a = np.array([[10,10], [2,3], [4,5]])
print ('数组 a:')
print (a)
print ('创建 a 的深层副本:')
b = a.copy()
print ('数组 b:')
print (b)

b 与 a 不共享任何内容

print ('我们能够写入 b 来写入 a 吗?')
print (b is a)
print ('修改 b 的内容:')
b[0,0] = 100
print ('修改后的数组 b:')
print (b)
print ('a 保持不变:')
print (a)

输出结果为:

数组 a:
[[10 10]
[ 2 3]
[ 4 5]]
创建 a 的深层副本:
数组 b:
[[10 10]
[ 2 3]
[ 4 5]]
我们能够写入 b 来写入 a 吗?
False
修改 b 的内容:
修改后的数组 b:
[[100 10]
[ 2 3]
[ 4 5]]
a 保持不变:
[[10 10]
[ 2 3]
[ 4 5]]

目录
相关文章
|
5月前
|
Python
NumPy 教程 之 NumPy 副本和视图 4
副本是数据的完整拷贝,修改副本不会影响原始数据;而视图则是数据的别名,对视图的修改会影响原始数据。通常,NumPy的切片操作和`ndarray.view()`函数会产生视图,而Python序列的切片操作、`deepCopy()`函数以及`ndarray.copy()`函数则会产生副本。示例展示了如何通过切片创建视图,并且修改视图会影响原数组。变量`a`和`b`都是数组`arr`的一部分视图,尽管它们有不同的ID,但对视图的修改会直接影响原数据。
44 3
|
5月前
|
Python
NumPy 教程 之 NumPy 副本和视图 1
NumPy 副本和视图教程介绍:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是原始数据的引用,修改视图会影响原始数据。视图通常通过切片操作或 `ndarray.view()` 方法获得,副本则通过 `ndarray.copy()` 或 `deepCopy()` 函数生成。简单赋值不创建副本,而是共享原始数据。
51 9
|
5月前
|
Python
NumPy 教程 之 NumPy 副本和视图 3
副本是对原始数据的完全拷贝,修改副本不影响原始数据;而视图则是原始数据的别名,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生,副本则在使用`copy()`函数或Python序列切片操作及`deepCopy()`函数时生成。示例展示了如何使用`view()`创建数组视图,并说明了其对原始数组形状的影响。
47 6
|
5月前
|
Python
NumPy 教程 之 NumPy 副本和视图 2
副本是数据的完全拷贝,对副本所做的任何更改都不会影响原始数据。而视图则是对原始数据的引用,对视图的任何操作都会影响到原始数据。视图通常通过切片操作或`ndarray.view()`函数生成;副本则通过Python序列切片操作、`deepCopy()`函数或`ndarray.copy()`函数生成。简单赋值不会创建新副本,而是共享原始数据。示例展示了简单赋值如何导致两个数组共享同一内存,更改其中一个数组的形状会影响另一个。
52 7
|
5月前
|
Python
NumPy 教程 之 NumPy 副本和视图 5
NumPy副本和视图教程介绍副本与视图的区别:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是对原始数据的引用,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生;副本则在序列切片操作、调用`deepCopy()`或使用`copy()`函数时生成。示例展示了使用`copy()`函数创建副本,并验证了修改副本不会改变原始数据。
59 4
|
7月前
|
存储 Python
NumPy 教程 之 NumPy 创建数组 8
**NumPy创建数组:使用`zeros_like`创建与原数组形状相同的零数组。`zeros_like(a, dtype=None, order='K', subok=True, shape=None)`基于给定数组`a`的形状,生成所有元素为0的新数组。参数可定制数据类型、存储顺序和形状。实例:创建一个3x3的零矩阵。**
61 7
|
7月前
|
存储 Python
NumPy 教程 之 NumPy 从已有的数组创建数组 4
在NumPy教程中,了解如何从现有数据创建数组。`numpy.asarray`是简化版的`numpy.array`,接受输入如列表、元组或多维数组,转化为numpy数组。参数包括:`a`作为输入数据,`dtype`指定数据类型,默认为None,`order`定义内存顺序,可选"C"(行优先)或"F"(列优先)。示例:将整数列表 `[1, 2, 3]` 转为浮点数数组 `print(a)` 输出 `[1. 2. 3.]`。
48 3
|
7月前
|
Python
NumPy 教程 之 NumPy 从已有的数组创建数组 9
NumPy教程: 从已有数组建新阵。`numpy.fromiter`从迭代对象构建1D数组。用法: `np.fromiter(iterable, dtype, count=-1)`。示例: `x=np.fromiter(iter(range(5)), float)`, 输出: `[0. 1. 2. 3. 4.]`。
22 1
|
7月前
|
Python
NumPy 教程 之 NumPy 创建数组 5
`NumPy`教程:使用`numpy.ones`创建全1数组,形如`numpy.ones(shape, dtype=None, order='C')`,参数`shape`定义数组形状,`dtype`指定数据类型,默认无类型,`order`设定内存布局,默认'C'(行优先)。
44 4
|
7月前
|
Python
NumPy 教程 之 NumPy 创建数组 6
`NumPy`教程中介绍如何用`numpy.ones`创建数组:生成指定形状的全1数组。例如,`np.ones(5)`产生一维浮点数数组,`np.ones([2,2], dtype=int)`则创建二维整数数组。输出: ``` [1. 1. 1. 1. 1.] [[1 1] [1 1]] ``` 形状、数据类型(默认`None`为浮点型)和内存排列顺序(默认'C')可自定义。
49 3