NumPy 教程 之 NumPy 副本和视图 4
NumPy 副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。
视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。
视图一般发生在:
1、numpy 的切片操作返回原数据的视图。
2、调用 ndarray 的 view() 函数产生一个视图。
副本一般发生在:
Python 序列的切片操作,调用deepCopy()函数。
调用 ndarray 的 copy() 函数产生一个副本。
视图或浅拷贝
ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数变化不会改变原始数据的维数。
使用切片创建视图修改数据会影响到原始数组:
实例
import numpy as np
arr = np.arange(12)
print ('我们的数组:')
print (arr)
print ('创建切片:')
a=arr[3:]
b=arr[3:]
a[1]=123
b[2]=234
print(arr)
print(id(a),id(b),id(arr[3:]))
输出结果为:
我们的数组:
[ 0 1 2 3 4 5 6 7 8 9 10 11]
创建切片:
[ 0 1 2 3 123 234 6 7 8 9 10 11]
4545878416 4545878496 4545878576
变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。