探索云原生:Kubernetes集群的部署与管理

简介: 【8月更文挑战第31天】本文将带领读者深入了解云原生技术,特别是以Kubernetes为核心的集群部署和管理。文章不仅介绍了Kubernetes的基础概念和架构,还通过实际的代码示例展示了如何在云平台上搭建一个Kubernetes集群。我们将从基础的安装步骤到高级的服务部署,一步步揭示如何利用Kubernetes来简化容器化应用的管理与扩展。无论你是云原生新手还是希望提升现有技能的开发者,这篇文章都将成为你实践云原生技术的宝贵指南。

在当今快速发展的软件行业中,云原生技术因其灵活性、可扩展性和弹性而成为热门话题。Kubernetes,作为云原生生态系统中的佼佼者,提供了一个强大的平台,用于自动化容器化应用程序的部署、扩展和管理。现在,就让我们一起走进Kubernetes的世界,探索如何在实际的云环境中部署和管理一个Kubernetes集群。

首先,我们需要了解Kubernetes的基本组成。一个Kubernetes集群由一个Master节点和多个Node节点组成。Master负责整个集群的管理和控制,而Node则是工作负载的实际运行地。每个Node可以是物理服务器或者虚拟机,上面运行着Kubelet——Kubernetes的节点代理,以及容器运行时环境。

接下来,我们将通过一个简单的步骤来演示如何在云平台上部署一个Kubernetes集群。这里我们选用Google Cloud Platform(GCP)作为示例,因为它提供了非常便利的Kubernetes引擎服务——Google Kubernetes Engine(GKE)。

  1. 创建GCP账户并设置gcloud命令行工具。
  2. 使用以下命令创建一个新的Kubernetes集群:
    gcloud container clusters create my-cluster
    
  3. 配置kubectl与新创建的集群通信:
    gcloud container clusters get-credentials my-cluster
    
  4. 验证集群状态:
    kubectl get nodes
    
    如果一切顺利,你将看到集群中所有节点的状态信息。

一旦集群建立起来,我们就可以开始部署应用了。Kubernetes使用Pod作为基本的运行单元,每个Pod可以包含一个或多个紧密相关的容器。下面是一个简单的Docker镜像部署示例:

apiVersion: v1
kind: Pod
metadata:
  name: my-app
spec:
  containers:
  - name: my-app-container
    image: my-app:1.0
    ports:
    - containerPort: 8080

将以上YAML内容保存为my-app.yaml文件,然后使用kubectl部署它:

kubectl apply -f my-app.yaml

查看Pod是否正常运行:

kubectl get pods

至此,我们已经成功在Kubernetes集群上部署了一个简单的应用。当然,Kubernetes的能力远不止于此,它支持复杂的网络策略、自动扩缩容、服务发现等高级特性。

总结来说,Kubernetes作为云原生技术的基石,为现代软件部署和管理提供了强大的支持。通过掌握Kubernetes,开发人员和运维人员能够更加高效地交付和维护软件,从而加速企业的数字化转型过程。随着越来越多的企业拥抱云原生,掌握Kubernetes相关知识无疑将成为IT专业人士必备的技能之一。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5天前
|
存储 Kubernetes 对象存储
部署DeepSeek但GPU不足,ACK One注册集群助力解决IDC GPU资源不足
借助阿里云ACK One注册集群,充分利用阿里云强大ACS GPU算力,实现DeepSeek推理模型高效部署。
|
10天前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
本教程演示如何在ACK中使用vLLM框架快速部署DeepSeek R1模型推理服务。
|
11天前
|
存储 人工智能 弹性计算
NVIDIA NIM on ACK:优化生成式AI模型的部署与管理
本文结合NVIDIA NIM和阿里云容器服务,提出了基于ACK的完整服务化管理方案,用于优化生成式AI模型的部署和管理。
|
5天前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
本教程演示如何在ACK中多机分布式部署DeepSeek R1满血版。
|
1月前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
2月前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
178 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
2月前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
148 12
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
2月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
2月前
|
存储 Kubernetes 容器
K8S部署nexus
该配置文件定义了Nexus 3的Kubernetes部署,包括PersistentVolumeClaim、Deployment和服务。PVC请求20Gi存储,使用NFS存储类。Deployment配置了一个Nexus 3容器,内存限制为6G,CPU为1000m,并挂载数据卷。Service类型为NodePort,通过30520端口对外提供服务。所有资源位于`nexus`命名空间中。

热门文章

最新文章