ibis:极具潜力的Python数据分析新框架

简介: ibis:极具潜力的Python数据分析新框架

1 简介

大家好我是费老师,今天要给大家介绍的Python框架叫做ibis,没错,跟著名连锁酒店宜必思同名,其作者是创造了pandasArrow等著名框架的Wes McKinney

f70a1d33d46f8f0ac426aa3cc364be59.png

ibis的核心理念是用同一套数据框操作API,统一操纵各种主流的数据运算框架,使得用户可以更轻松更一致的构建自己的数据分析处理过程,而不是囿于不同框架之间千差万别的用法,下面我们就来一起学习其基础用法😉~

e1990b10ef11640c30d4d9e245fea554.png

2 ibis基础用法介绍

2.1 ibis的安装

为了方便演示,我们这里使用condamamba创建新的虚拟环境,来安装试用ibis,以mamba为例,在终端中执行下列命令,完成演示用虚拟环境的创建及激活,并安装ibis最基础的相关模块+示例数据集模块:

mamba create -n ibis-demo python=3.9 -y
mamba activate ibis-demo
pip install ibis-framework[duckdb,examples]

验证是否安装成功:

python -c "import ibis;print(ibis.__version__)"

可以看到,我们完成了对ibis的安装,当前版本为9.0.0

8b30066ee822e490aeca6b1b3711fc41.png

2.2 ibis主要功能

2.2.1 构建具有便携性的分析逻辑

ibis本身不直接执行分析计算,当我们针对目标数据编写好对应计算逻辑的ibis代码后,实际执行时其底层会将计算逻辑自动转换到当前的计算后端中。目前ibis支持「超过20种」计算后端,均为当前「单机分析」「分布式分析」领域的主流框架:

13f704a545fef3db796a6105d6b88cf3.png

这使得基于ibis构建的数据分析工作流,可以在不修改代码的情况下,轻松扩展应用于任意的计算后端。

譬如,ibis默认使用DuckDB作为后端进行单机分析运算,你可以在本机上使用部分数据构建并验证业务分析逻辑后,再套用相同的代码,切换计算后端到诸如ClickHouse上执行分布式运算,这一特性也是ibis「便携性」的体现。

举个简单的例子,首先我们基于pandas生成具有一千万行记录的示例数据并导出为parquet格式:

import numpy as np
import pandas as pd
# 生成测试用数据并导出为parquet格式
(
    pd
    .DataFrame(
        {
            '类别': np.random.choice(list('abcdef'), 10000000),
            '数值': np.random.uniform(0, 100, 10000000)
        }
    )
    .assign(数值=lambda df: df['数值'].round(3))
    .to_parquet('demo.parquet')
)

接下来我们先使用默认的DuckDB后端,在ibis中执行一些示例运算,注意其运算耗时:

3698da1f29daa362b05a3250d90b6d0c.png

接着,我们切换计算后端为pandas,执行完全一样的计算代码,可以看到计算耗时陡增,毕竟pandas处理上千万行数据性能要远逊于DuckDB,这个例子体现出ibis强大的代码便携性:

4a42e457fe5da796b74efc586e3890aa.png

2.2.2 充分搭配Python与SQL

ibis中另一个非常强大的功能,是其可以充分结合Python代码和SQL代码来开展分析工作,譬如,你可以将ibis分析代码直接转换为SQL语句:

18df00119d40b06634be3039d783e1b4.png

也可以直接执行SQL语句开展分析:

b717f3ca740f59b27bd98126dddb7e96.png

这使得ibis可以充分联结各类最先进的计算后端,帮助分析师轻松维护业务分析逻辑。

无论你原先在使用pandasSQL还是R进行数据分析,ibis官网文档中都提供了非常友好的使用指南,确保你可以无痛的迁移使用ibis

8710719da722bba4940df5ab6837fb84.png

相关文章
|
5天前
|
数据挖掘 计算机视觉 Python
Python数据分析13
Pillow 是 PIL(Python Imaging Library)的升级版本,适应 Python 3 的更新而诞生,带来了诸多新特性。它采用模块化结构,主要包括:图像功能模块(Image)、图像滤波功能模块(ImageFilter)、图像增强功能模块(ImageEnhance)和图像绘画功能模块(ImageDraw)。Pillow 支持从多种图像格式读取数据,进行处理,并能输出为常见格式,其官网提供了丰富的应用示例供学习参考。
17 4
|
2天前
|
SQL 数据采集 数据可视化
深入 Python 数据分析:高级技术与实战应用
本文系统地介绍了Python在高级数据分析中的应用,涵盖数据读取、预处理、探索及可视化等关键环节,并详细展示了聚类分析、PCA、时间序列分析等高级技术。通过实际案例,帮助读者掌握解决复杂问题的方法,提升数据分析技能。使用pandas、matplotlib、seaborn及sklearn等库,提供了丰富的代码示例,便于实践操作。
108 64
|
3天前
|
网络协议 Python
|
3天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【9月更文挑战第33天】本文旨在为初学者提供一个关于使用Python进行数据分析的全面概述。我们将从基本的安装和设置开始,逐步介绍数据处理、数据可视化以及机器学习的基本概念和应用。文章将通过实际代码示例来展示如何使用Python及其相关库来解决常见的数据分析问题。
|
6天前
|
数据挖掘 Serverless 计算机视觉
Python数据分析 11
SciPy是一款专为数学、科学及工程应用设计的开源软件,它基于NumPy的n维数组构建,提供了丰富的数值例程,包括积分、优化、线性代数等,适用于各种操作系统,安装简易且免费。它还包含了如快速傅里叶变换、信号处理、图像处理、特殊函数计算等功能,满足了科学计算与工程需求。相较于NumPy的一般数组,SciPy提供了真正的矩阵及其相关运算支持。
25 7
|
6天前
|
机器学习/深度学习 数据挖掘 算法框架/工具
Python数据分析6
Keras是一个用Python编写的深度学习框架,支持TensorFlow等多种后端,以其高度模块化、用户友好性和易扩展性著称。它不仅适用于搭建普通神经网络,还能够构建自编码器、循环神经网络、卷积神经网络等多种模型,并且可以无缝切换CPU和GPU。相比Theano,Keras极大简化了神经网络模型的搭建过程,使普通用户也能轻松创建复杂的深度学习模型,仅需几十行代码即可完成。需要注意的是,Keras的预测函数采用`model.predict()`输出概率,`model.predict_classes()`输出分类结果。
19 6
|
6天前
|
自然语言处理 搜索推荐 数据挖掘
Python 数据分析10
除了常用的Python数据挖掘建模库外,还有许多其他库也非常实用,例如 jieba、SciPy、OpenCV 和 Pillow 等。其中,jieba 是一个广泛使用的中文分词库,支持多种编程语言,包括 Python、R 和 C++,并且提供了三种分词模式:精确模式、全模式和搜索引擎模式。此外,jieba 还具备词性标注、添加自定义词典及关键词提取等功能,在 GitHub 社区中有较高讨论度,并拥有丰富的实例资源。
19 5
|
7天前
|
数据可视化 数据挖掘 Unix
Python数据分析3
Matplotlib是由约翰·亨特在2008年发明的一款广泛应用于数据可视化的Python工具包,起初用于可视化癞痢病人的健康指标。它是一个功能强大的绘图库,主要擅长二维绘图,也支持简单的三维绘图。Matplotlib提供类似且更丰富的Matlab命令集,能够快速实现数据可视化,并支持高质量图像输出及多种格式。它适用于交互和非交互式绘图,兼容Linux、Windows、macOS和Solaris系统,并且便于嵌入GUI应用及Web框架如CGI、Flask、Django中,同时支持LaTeX公式插入,降低了从Matlab迁移的学习成本。
25 7
|
6天前
|
机器学习/深度学习 数据挖掘 PyTorch
Python数据分析7
PyTorch是由Facebook(现Meta)人工智能研究院于2017年开源的Python机器学习库,基于Torch构建,支持GPU加速和动态神经网络,适用于自然语言处理等领域。其灵活的API和简洁的语法使得构建和调试深度学习模型变得简单快捷,成为深度学习领域的热门工具之一。社区支持广泛,拥有丰富的应用领域库。
13 3
|
5天前
|
算法 数据挖掘 计算机视觉
Python数据分析12
OpenCV是由英特尔公司资助的开源计算机视觉库,集成了丰富的图像处理与计算机视觉算法,拥有超过500个函数,支持多种编程语言与操作系统。该库采用模块化设计,主要包括核心功能、图像处理、2D特征及GUI四个模块,广泛应用于产品检测、医学成像等多个领域。
11 1
下一篇
无影云桌面