根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现

简介: 根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现

相机标定过程中,我们会得到一个3x3旋转矩阵,下面是我们把旋转矩阵欧拉角之间的相互转换:

1 旋转矩阵转换为欧拉角(Euler Angles)

1、旋转矩阵是一个3x3的矩阵,如下:

$$ R=\left(\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array}\right) $$

刚体旋转的旋转矩阵是由三个基本旋转矩阵复合而成的。

2、欧拉角(Euler Angles)

欧拉角来描述刚体在三维欧几里得空间取向

3、旋转矩阵转换为欧拉角的公式:

  • Z轴对应的欧拉角

$$ \theta_{z}=\arctan 2\left(-r_{31}, r_{11}\right) $$

  • Y轴对应的欧拉角

$$ \theta_{y}=\arctan 2\left(-r_{31}, \sqrt{r_{31}{ }^{2}+r_{33}{ }^{2}}\right) $$

  • X轴对应的欧拉角

$$ \theta_{x}=\arctan 2\left(-r_{32}, r_{33}\right) $$

注意:

上面公式计算测的欧拉角是弧度制

上面公式的意思是,相机坐标系想要转到与世界坐标系完全平行(即$x_c$平行于$x_w$,$y_c$平行于$y_w$,$z_c$平行于$z_w$,且他们的方向都是相同的),需要旋转3次,设原始相机坐标系C0

  • 1、C0绕其z轴旋转,得到新的坐标系C1;

  • 2、C1绕其y轴旋转,得到新的坐标系C2(注意旋转轴为C1的y轴,而非C0的y轴);

  • 3、C2绕其x轴旋转,得到新的坐标系C3。此时C3与世界坐标系W完全平行。

特别注意:旋转顺序为z y x,切记不能调换

image.png

4、python实现:旋转矩阵转换为欧拉角

import numpy as np

rotate_matrix = [[-0.0174524064372832, -0.999847695156391, 0.0],
                 [0.308969929589947, -0.00539309018185907, -0.951056516295153],
                 [0.950911665781176, -0.0165982248672099, 0.309016994374948]]

RM = np.array(rotate_matrix)


# 旋转矩阵到欧拉角(弧度值)
def rotateMatrixToEulerAngles(R):
    theta_z = np.arctan2(RM[1, 0], RM[0, 0])
    theta_y = np.arctan2(-1 * RM[2, 0], np.sqrt(RM[2, 1] * RM[2, 1] + RM[2, 2] * RM[2, 2]))
    theta_x = np.arctan2(RM[2, 1], RM[2, 2])
    print(f"Euler angles:\ntheta_x: {theta_x}\ntheta_y: {theta_y}\ntheta_z: {theta_z}")
    return theta_x, theta_y, theta_z

# 旋转矩阵到欧拉角(角度制)
def rotateMatrixToEulerAngles2(R):
    theta_z = np.arctan2(RM[1, 0], RM[0, 0]) / np.pi * 180
    theta_y = np.arctan2(-1 * RM[2, 0], np.sqrt(RM[2, 1] * RM[2, 1] + RM[2, 2] * RM[2, 2])) / np.pi * 180
    theta_x = np.arctan2(RM[2, 1], RM[2, 2]) / np.pi * 180
    print(f"Euler angles:\ntheta_x: {theta_x}\ntheta_y: {theta_y}\ntheta_z: {theta_z}")
    return theta_x, theta_y, theta_z



if __name__ == '__main__':
    rotateMatrixToEulerAngles(RM)
    rotateMatrixToEulerAngles2(RM)

输出结果如下:

Euler angles:
theta_x: -0.05366141770874149
theta_y: -1.2561686529408898
theta_z: 1.6272221428848495
Euler angles:
theta_x: -3.0745727573994635
theta_y: -71.97316217014685
theta_z: 93.23296111753567

5、C++实现:旋转矩阵转换为欧拉角


//计算出相机坐标系的三轴旋转欧拉角,旋转后可以转出世界坐标系。
//旋转顺序为z、y、x
const double PI = 3.141592653;
double thetaz = atan2(r21, r11) / PI * 180;
double thetay = atan2(-1 * r31, sqrt(r32*r32 + r33*r33)) / PI * 180;
double thetax = atan2(r32, r33) / PI * 180;

2 欧拉角转换为旋转矩阵

欧拉角转换为旋转矩阵,就是沿XYZ三个轴进行旋转,参考旋转矩阵

1、利用上面生成的弧度值的欧拉角,再转换为旋转矩阵

# 欧拉角转换为旋转矩阵
# 输入为欧拉角为 弧度制
# euler_angles = [-0.05366141770874149, -1.2561686529408898, 1.6272221428848495]
def eulerAnglesToRotationMatrix(theta):
    R_x = np.array([[1, 0, 0],
                    [0, np.cos(theta[0]), -np.sin(theta[0])],
                    [0, np.sin(theta[0]), np.cos(theta[0])]
                    ])

    R_y = np.array([[np.cos(theta[1]), 0, np.sin(theta[1])],
                    [0, 1, 0],
                    [-np.sin(theta[1]), 0, np.cos(theta[1])]
                    ])

    R_z = np.array([[np.cos(theta[2]), -np.sin(theta[2]), 0],
                    [np.sin(theta[2]), np.cos(theta[2]), 0],
                    [0, 0, 1]
                    ])

    R = np.dot(R_z, np.dot(R_y, R_x))
    print(f"Rotate matrix:\n{R}")
    return R

if __name__ == '__main__':
    euler_angles = [-0.05366141770874149, -1.2561686529408898, 1.6272221428848495]
    eulerAnglesToRotationMatrix(euler_angles)

输出结果:

Rotate matrix:
[[-1.74524064e-02 -9.99847695e-01 -7.38075162e-16]
 [ 3.08969930e-01 -5.39309018e-03 -9.51056516e-01]
 [ 9.50911666e-01 -1.65982249e-02  3.09016994e-01]]
目录
相关文章
|
1天前
|
SQL JavaScript 前端开发
基于Python访问Hive的pytest测试代码实现
根据《用Java、Python来开发Hive应用》一文,建立了使用Python、来开发Hive应用的方法,产生的代码如下
12 6
基于Python访问Hive的pytest测试代码实现
|
3天前
|
设计模式 缓存 开发者
Python中的装饰器:简化代码,提高可读性
【9月更文挑战第10天】在Python编程的世界中,装饰器是一种强大的工具,它允许开发者在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和生动的例子,带你了解装饰器的概念、使用方法及其在实际开发中的应用价值。我们将一起探索如何利用装饰器来简化代码结构,提升代码的可读性和可维护性,让你的编程之旅更加顺畅。
|
2天前
|
存储 安全 数据安全/隐私保护
安全升级!Python AES加密实战,为你的代码加上一层神秘保护罩
【9月更文挑战第12天】在软件开发中,数据安全至关重要。本文将深入探讨如何使用Python中的AES加密技术保护代码免受非法访问和篡改。AES(高级加密标准)因其高效性和灵活性,已成为全球最广泛使用的对称加密算法之一。通过实战演练,我们将展示如何利用pycryptodome库实现AES加密,包括生成密钥、初始化向量(IV)、加密和解密文本数据等步骤。此外,还将介绍密钥管理和IV随机性等安全注意事项。通过本文的学习,你将掌握使用AES加密保护敏感数据的方法,为代码增添坚实的安全屏障。
15 8
|
1天前
|
机器学习/深度学习 测试技术 数据处理
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
13 4
|
4天前
|
开发者 Python
Python中的装饰器:简化你的代码
【9月更文挑战第9天】本文将介绍Python中的一种强大工具——装饰器。我们将从基础概念开始,逐步深入到装饰器的实际应用,包括函数装饰器和类装饰器。我们将通过实例来展示如何利用装饰器简化代码,提高代码的可读性和可维护性。最后,我们将探讨装饰器的一些高级用法,以及如何避免在使用时可能遇到的问题。无论你是初学者还是有经验的开发者,这篇文章都将帮助你更好地理解和使用装饰器。
14 6
|
5天前
|
Python
揭秘!Python系统编程里那些让代码自由穿梭的神奇代码行
【9月更文挑战第9天】在Python的世界里,一些简洁的代码行却蕴含着强大的功能,如列表推导式让列表生成仅需一行代码:`squares = [x**2 for x in range(10)]`。`with`语句则能自动管理文件和网络连接的关闭,如`with open('example.txt', 'r') as file:`。`lambda`函数和装饰器则允许快速定义函数和增强功能,而上下文管理器更是资源处理的利器。这些特性让Python代码更加优雅高效。
15 4
|
7天前
|
缓存 测试技术 开发者
探索Python中的装饰器:简化你的代码之旅
【9月更文挑战第6天】本文将深入探讨Python中一个强大而神秘的特性——装饰器。我们将通过实际例子揭示装饰器的工作原理,并展示如何利用它们来简化和增强你的代码。无论你是初学者还是有经验的开发者,这篇文章都将为你打开一扇门,让你的代码更加优雅和高效。
|
4天前
|
安全 数据安全/隐私保护 Python
Python系统编程实战:文件系统操作与I/O管理,让你的代码更优雅
【9月更文挑战第10天】Python不仅在数据分析和Web开发中表现出色,在系统编程领域也展现出独特魅力。本文将带你深入探讨Python中的文件系统操作与I/O管理,涵盖os、shutil和pathlib等模块的基础使用方法,并通过示例代码展示如何优雅地实现这些功能。通过掌握缓冲、异步I/O等高级特性,你将能够编写更高效、安全且易于维护的Python代码。示例包括使用pathlib遍历目录、设置缓冲区提升文件写入性能以及使用aiofiles实现异步文件操作。掌握这些技能,让你在Python系统编程中更加得心应手。
11 2
|
4天前
|
Linux 开发者 Python
从Windows到Linux,Python系统调用如何让代码飞翔🚀
【9月更文挑战第10天】在编程领域,跨越不同操作系统的障碍是常见挑战。Python凭借其“编写一次,到处运行”的理念,显著简化了这一过程。通过os、subprocess、shutil等标准库模块,Python提供了统一的接口,自动处理底层差异,使代码在Windows和Linux上无缝运行。例如,`open`函数在不同系统中以相同方式操作文件,而`subprocess`模块则能一致地执行系统命令。此外,第三方库如psutil进一步增强了跨平台能力,使开发者能够轻松编写高效且易维护的代码。借助Python的强大系统调用功能,跨平台编程变得简单高效。
11 0
|
7天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。