根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现

简介: 根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现

相机标定过程中,我们会得到一个3x3旋转矩阵,下面是我们把旋转矩阵欧拉角之间的相互转换:

1 旋转矩阵转换为欧拉角(Euler Angles)

1、旋转矩阵是一个3x3的矩阵,如下:

$$ R=\left(\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array}\right) $$

刚体旋转的旋转矩阵是由三个基本旋转矩阵复合而成的。

2、欧拉角(Euler Angles)

欧拉角来描述刚体在三维欧几里得空间取向

3、旋转矩阵转换为欧拉角的公式:

  • Z轴对应的欧拉角

$$ \theta_{z}=\arctan 2\left(-r_{31}, r_{11}\right) $$

  • Y轴对应的欧拉角

$$ \theta_{y}=\arctan 2\left(-r_{31}, \sqrt{r_{31}{ }^{2}+r_{33}{ }^{2}}\right) $$

  • X轴对应的欧拉角

$$ \theta_{x}=\arctan 2\left(-r_{32}, r_{33}\right) $$

注意:

上面公式计算测的欧拉角是弧度制

上面公式的意思是,相机坐标系想要转到与世界坐标系完全平行(即$x_c$平行于$x_w$,$y_c$平行于$y_w$,$z_c$平行于$z_w$,且他们的方向都是相同的),需要旋转3次,设原始相机坐标系C0

  • 1、C0绕其z轴旋转,得到新的坐标系C1;

  • 2、C1绕其y轴旋转,得到新的坐标系C2(注意旋转轴为C1的y轴,而非C0的y轴);

  • 3、C2绕其x轴旋转,得到新的坐标系C3。此时C3与世界坐标系W完全平行。

特别注意:旋转顺序为z y x,切记不能调换

image.png

4、python实现:旋转矩阵转换为欧拉角

import numpy as np

rotate_matrix = [[-0.0174524064372832, -0.999847695156391, 0.0],
                 [0.308969929589947, -0.00539309018185907, -0.951056516295153],
                 [0.950911665781176, -0.0165982248672099, 0.309016994374948]]

RM = np.array(rotate_matrix)


# 旋转矩阵到欧拉角(弧度值)
def rotateMatrixToEulerAngles(R):
    theta_z = np.arctan2(RM[1, 0], RM[0, 0])
    theta_y = np.arctan2(-1 * RM[2, 0], np.sqrt(RM[2, 1] * RM[2, 1] + RM[2, 2] * RM[2, 2]))
    theta_x = np.arctan2(RM[2, 1], RM[2, 2])
    print(f"Euler angles:\ntheta_x: {theta_x}\ntheta_y: {theta_y}\ntheta_z: {theta_z}")
    return theta_x, theta_y, theta_z

# 旋转矩阵到欧拉角(角度制)
def rotateMatrixToEulerAngles2(R):
    theta_z = np.arctan2(RM[1, 0], RM[0, 0]) / np.pi * 180
    theta_y = np.arctan2(-1 * RM[2, 0], np.sqrt(RM[2, 1] * RM[2, 1] + RM[2, 2] * RM[2, 2])) / np.pi * 180
    theta_x = np.arctan2(RM[2, 1], RM[2, 2]) / np.pi * 180
    print(f"Euler angles:\ntheta_x: {theta_x}\ntheta_y: {theta_y}\ntheta_z: {theta_z}")
    return theta_x, theta_y, theta_z



if __name__ == '__main__':
    rotateMatrixToEulerAngles(RM)
    rotateMatrixToEulerAngles2(RM)

输出结果如下:

Euler angles:
theta_x: -0.05366141770874149
theta_y: -1.2561686529408898
theta_z: 1.6272221428848495
Euler angles:
theta_x: -3.0745727573994635
theta_y: -71.97316217014685
theta_z: 93.23296111753567

5、C++实现:旋转矩阵转换为欧拉角


//计算出相机坐标系的三轴旋转欧拉角,旋转后可以转出世界坐标系。
//旋转顺序为z、y、x
const double PI = 3.141592653;
double thetaz = atan2(r21, r11) / PI * 180;
double thetay = atan2(-1 * r31, sqrt(r32*r32 + r33*r33)) / PI * 180;
double thetax = atan2(r32, r33) / PI * 180;

2 欧拉角转换为旋转矩阵

欧拉角转换为旋转矩阵,就是沿XYZ三个轴进行旋转,参考旋转矩阵

1、利用上面生成的弧度值的欧拉角,再转换为旋转矩阵

# 欧拉角转换为旋转矩阵
# 输入为欧拉角为 弧度制
# euler_angles = [-0.05366141770874149, -1.2561686529408898, 1.6272221428848495]
def eulerAnglesToRotationMatrix(theta):
    R_x = np.array([[1, 0, 0],
                    [0, np.cos(theta[0]), -np.sin(theta[0])],
                    [0, np.sin(theta[0]), np.cos(theta[0])]
                    ])

    R_y = np.array([[np.cos(theta[1]), 0, np.sin(theta[1])],
                    [0, 1, 0],
                    [-np.sin(theta[1]), 0, np.cos(theta[1])]
                    ])

    R_z = np.array([[np.cos(theta[2]), -np.sin(theta[2]), 0],
                    [np.sin(theta[2]), np.cos(theta[2]), 0],
                    [0, 0, 1]
                    ])

    R = np.dot(R_z, np.dot(R_y, R_x))
    print(f"Rotate matrix:\n{R}")
    return R

if __name__ == '__main__':
    euler_angles = [-0.05366141770874149, -1.2561686529408898, 1.6272221428848495]
    eulerAnglesToRotationMatrix(euler_angles)

输出结果:

Rotate matrix:
[[-1.74524064e-02 -9.99847695e-01 -7.38075162e-16]
 [ 3.08969930e-01 -5.39309018e-03 -9.51056516e-01]
 [ 9.50911666e-01 -1.65982249e-02  3.09016994e-01]]
目录
相关文章
|
5天前
|
算法 开发者 计算机视觉
燃爆全场!Python并查集:数据结构界的网红,让你的代码炫酷无比!
在编程的世界里,总有一些数据结构以其独特的魅力和高效的性能脱颖而出,成为众多开发者追捧的“网红”。今天,我们要介绍的这位明星,就是Python中的并查集(Union-Find)——它不仅在解决特定问题上大放异彩,更以其优雅的设计和强大的功能,让你的代码炫酷无比,燃爆全场!
18 0
|
1天前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
12 3
|
1天前
|
设计模式 数据安全/隐私保护 开发者
探索Python中的装饰器:提升代码效率与可读性
【10月更文挑战第3天】 本文将深入探讨Python中装饰器的使用方法及其背后的原理。通过实例展示如何利用装饰器简化代码、提高可读性,并介绍一些高级用法。无论您是编程新手还是经验丰富的开发者,都能从中获益。
|
1天前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
1天前
|
缓存 测试技术 Python
探索Python中的装饰器:提升代码复用与模块化的艺术
在Python的世界里,装饰器是一种强大的工具,它允许我们以非侵入性的方式增强函数或方法的功能。本文将带你深入了解装饰器的内部机制,并通过实际案例展示如何利用装饰器来提升代码的复用性和模块化。
|
3天前
|
测试技术 开发者 Python
Python中的装饰器:简化代码,增强功能
在Python编程世界中,装饰器是一个强大的工具,它允许我们在不修改原有函数代码的情况下增加额外的功能。本文将通过简明的语言和实际的代码示例,引导你理解装饰器的基本概念、使用方法及其在实际应用中的巨大潜力。无论你是初学者还是有一定经验的开发者,这篇文章都将帮助你更高效地使用Python进行编程。
|
4天前
|
Linux C语言 C++
vsCode远程执行c和c++代码并操控linux服务器完整教程
这篇文章提供了一个完整的教程,介绍如何在Visual Studio Code中配置和使用插件来远程执行C和C++代码,并操控Linux服务器,包括安装VSCode、安装插件、配置插件、配置编译工具、升级glibc和编写代码进行调试的步骤。
18 0
vsCode远程执行c和c++代码并操控linux服务器完整教程
|
5天前
|
小程序 iOS开发 MacOS
将Python代码转化为可执行的程序
将Python代码转化为可执行的程序
14 1
|
1天前
|
消息中间件 存储 NoSQL
python 使用redis实现支持优先级的消息队列详细说明和代码
python 使用redis实现支持优先级的消息队列详细说明和代码
8 0
|
3天前
|
数据采集 机器学习/深度学习 数据处理
Python编程之魔法:从基础到进阶的代码实践
在编程的世界里,Python以其简洁和易读性而闻名。本文将通过一系列精选的代码示例,引导你从Python的基础语法出发,逐步探索更深层次的应用,包括数据处理、网络爬虫、自动化脚本以及机器学习模型的构建。每个例子都将是一次新的发现,带你领略Python编程的魅力。无论你是初学者还是希望提升技能的开发者,这些示例都将是你的宝贵财富。让我们开始这段Python编程之旅,一起揭开它的魔法面纱。