根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现

简介: 根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现

相机标定过程中,我们会得到一个3x3旋转矩阵,下面是我们把旋转矩阵欧拉角之间的相互转换:

1 旋转矩阵转换为欧拉角(Euler Angles)

1、旋转矩阵是一个3x3的矩阵,如下:

$$ R=\left(\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array}\right) $$

刚体旋转的旋转矩阵是由三个基本旋转矩阵复合而成的。

2、欧拉角(Euler Angles)

欧拉角来描述刚体在三维欧几里得空间取向

3、旋转矩阵转换为欧拉角的公式:

  • Z轴对应的欧拉角

$$ \theta_{z}=\arctan 2\left(-r_{31}, r_{11}\right) $$

  • Y轴对应的欧拉角

$$ \theta_{y}=\arctan 2\left(-r_{31}, \sqrt{r_{31}{ }^{2}+r_{33}{ }^{2}}\right) $$

  • X轴对应的欧拉角

$$ \theta_{x}=\arctan 2\left(-r_{32}, r_{33}\right) $$

注意:

上面公式计算测的欧拉角是弧度制

上面公式的意思是,相机坐标系想要转到与世界坐标系完全平行(即$x_c$平行于$x_w$,$y_c$平行于$y_w$,$z_c$平行于$z_w$,且他们的方向都是相同的),需要旋转3次,设原始相机坐标系C0

  • 1、C0绕其z轴旋转,得到新的坐标系C1;

  • 2、C1绕其y轴旋转,得到新的坐标系C2(注意旋转轴为C1的y轴,而非C0的y轴);

  • 3、C2绕其x轴旋转,得到新的坐标系C3。此时C3与世界坐标系W完全平行。

特别注意:旋转顺序为z y x,切记不能调换

image.png

4、python实现:旋转矩阵转换为欧拉角

import numpy as np

rotate_matrix = [[-0.0174524064372832, -0.999847695156391, 0.0],
                 [0.308969929589947, -0.00539309018185907, -0.951056516295153],
                 [0.950911665781176, -0.0165982248672099, 0.309016994374948]]

RM = np.array(rotate_matrix)


# 旋转矩阵到欧拉角(弧度值)
def rotateMatrixToEulerAngles(R):
    theta_z = np.arctan2(RM[1, 0], RM[0, 0])
    theta_y = np.arctan2(-1 * RM[2, 0], np.sqrt(RM[2, 1] * RM[2, 1] + RM[2, 2] * RM[2, 2]))
    theta_x = np.arctan2(RM[2, 1], RM[2, 2])
    print(f"Euler angles:\ntheta_x: {theta_x}\ntheta_y: {theta_y}\ntheta_z: {theta_z}")
    return theta_x, theta_y, theta_z

# 旋转矩阵到欧拉角(角度制)
def rotateMatrixToEulerAngles2(R):
    theta_z = np.arctan2(RM[1, 0], RM[0, 0]) / np.pi * 180
    theta_y = np.arctan2(-1 * RM[2, 0], np.sqrt(RM[2, 1] * RM[2, 1] + RM[2, 2] * RM[2, 2])) / np.pi * 180
    theta_x = np.arctan2(RM[2, 1], RM[2, 2]) / np.pi * 180
    print(f"Euler angles:\ntheta_x: {theta_x}\ntheta_y: {theta_y}\ntheta_z: {theta_z}")
    return theta_x, theta_y, theta_z



if __name__ == '__main__':
    rotateMatrixToEulerAngles(RM)
    rotateMatrixToEulerAngles2(RM)

输出结果如下:

Euler angles:
theta_x: -0.05366141770874149
theta_y: -1.2561686529408898
theta_z: 1.6272221428848495
Euler angles:
theta_x: -3.0745727573994635
theta_y: -71.97316217014685
theta_z: 93.23296111753567

5、C++实现:旋转矩阵转换为欧拉角


//计算出相机坐标系的三轴旋转欧拉角,旋转后可以转出世界坐标系。
//旋转顺序为z、y、x
const double PI = 3.141592653;
double thetaz = atan2(r21, r11) / PI * 180;
double thetay = atan2(-1 * r31, sqrt(r32*r32 + r33*r33)) / PI * 180;
double thetax = atan2(r32, r33) / PI * 180;

2 欧拉角转换为旋转矩阵

欧拉角转换为旋转矩阵,就是沿XYZ三个轴进行旋转,参考旋转矩阵

1、利用上面生成的弧度值的欧拉角,再转换为旋转矩阵

# 欧拉角转换为旋转矩阵
# 输入为欧拉角为 弧度制
# euler_angles = [-0.05366141770874149, -1.2561686529408898, 1.6272221428848495]
def eulerAnglesToRotationMatrix(theta):
    R_x = np.array([[1, 0, 0],
                    [0, np.cos(theta[0]), -np.sin(theta[0])],
                    [0, np.sin(theta[0]), np.cos(theta[0])]
                    ])

    R_y = np.array([[np.cos(theta[1]), 0, np.sin(theta[1])],
                    [0, 1, 0],
                    [-np.sin(theta[1]), 0, np.cos(theta[1])]
                    ])

    R_z = np.array([[np.cos(theta[2]), -np.sin(theta[2]), 0],
                    [np.sin(theta[2]), np.cos(theta[2]), 0],
                    [0, 0, 1]
                    ])

    R = np.dot(R_z, np.dot(R_y, R_x))
    print(f"Rotate matrix:\n{R}")
    return R

if __name__ == '__main__':
    euler_angles = [-0.05366141770874149, -1.2561686529408898, 1.6272221428848495]
    eulerAnglesToRotationMatrix(euler_angles)

输出结果:

Rotate matrix:
[[-1.74524064e-02 -9.99847695e-01 -7.38075162e-16]
 [ 3.08969930e-01 -5.39309018e-03 -9.51056516e-01]
 [ 9.50911666e-01 -1.65982249e-02  3.09016994e-01]]
目录
相关文章
|
1天前
|
存储 安全 C语言
C++ String揭秘:写高效代码的关键
在C++编程中,字符串操作是不可避免的一部分。从简单的字符串拼接到复杂的文本处理,C++的string类为开发者提供了一种更高效、灵活且安全的方式来管理和操作字符串。本文将从基础操作入手,逐步揭开C++ string类的奥秘,帮助你深入理解其内部机制,并学会如何在实际开发中充分发挥其性能和优势。
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
2月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
74 6
|
2月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
56 6
|
2月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
68 11

热门文章

最新文章

推荐镜像

更多