Python中JSON结构数据的高效增删改操作

简介: Python中JSON结构数据的高效增删改操作

1 简介

在上一期文章中我们一起学习了在Python中如何使用jsonpath库,对JSON格式数据结构进行常规的节点条件查询,可以满足日常许多的数据处理需求。

而在上一期结尾处,我提到了还有其他JSONPath功能相关的进阶Python库,在今天的文章中,我就将带大家学习更加高级的JSON数据处理方式。

2 基于jsonpath-ng的进阶JSON数据处理方法

jsonpath-ng是一个功能强大的Python库,它整合了jsonpath-rwjsonpath-rw-ext等第三方JSONPath拓展库的实用功能,使得我们可以基于JSONPath语法,实现更多操纵JSON数据的功能,而不只是查询数据而已,使用pip install jsonpath-ng进行安装:

2.1 JSON数据的增删改

jsonpath-ng中设计了一些方法,可以帮助我们实现对现有JSON数据的增删改操作,首先我们来学习jsonpath-ng中如何定义JSONPath模式,并将其运用到对数据的匹配上,依然以上篇文章的数据为例:

import json
from jsonpath_ng import parse
# 读入示例json数据
with open('json示例.json', encoding='utf-8') as j:
    demo_json = json.loads(j.read())
    
# 构造指定JSONPath模式对应的解析器
parser = parse('$..paths..steps[*].duration')
# 利用解析器的find方法找到目标数据中所有满足条件的节点
matches = parser.find(demo_json)
# 利用value属性取得对应匹配结果的值
matches[0].value

而基于上面产生的一些对象我们就可以实现对JSON数据的增删改:

2.1.1 对JSON数据进行增操作

jsonpath-ng中对JSON数据添加节点,思想是先构造对「原先不存在」的节点进行匹配的解析器对象,利用find_or_create方法处理原始JSON数据:

# 构造示例数据
demo_json = {
    'level1': [
        {
            'level2': {}
        },
        {
            'level2': {
                'level3': 12
            }
        }
    ]
}
# 构造规则解释器,所有除去最后一层节点规则外可以匹配到的节点
# 都属于合法匹配结果,会在匹配结果列表中出现
parser = parse('level1[*].level2.level3')
matches = parser.find_or_create(demo_json)
demo_json

find_or_create操作之后,demo_json就被修改成下面的结果:

接下来的事情就很简单了,只需要在matches结果中进行遍历,遇到value属性为{}的,就运用full_path.update_or_create()方法对原始JSON数据进行更新即可,比如这里我们填充999:

for match in matches:
    if match.value == {}:
        # 更新原始输入的JSON数据
        match.full_path.update_or_create(demo_json, 999)
demo_json

2.1.2  对JSON数据进行删操作

当我们希望对JSON数据中指定JSONPath规则的节点予以删除时,可以使用到parse对象的filter()方法传入lambda函数,在lambda函数中进行条件判断,返回的即为删除指定节点之后的输入数据。

以上一步「增」操作后得到的demo_json为例,我们来对其level1[*].level2.level3值为999的予以过滤:

parser = parse('level1[*].level2.level3')
# 过滤 level1[*].level2.level3 规则下值为 999 的节点
parser.filter(lambda x: x == 999, demo_json)
demo_json

可以看到结果正是我们所预期的:

2.1.3 对JSON数据进行改操作

JSON数据中的指定节点进行改操作非常的简单,只需要使用parse对象的updateupdate_or_create方法即可,使用效果的区别如下所示,轻轻松松就可以完成两种策略下的节点更新操作😋:

相关文章
|
1天前
|
Python
Python编程案例:同一工作簿不同表单特定数据添加到工作簿的另一表单里
Python编程案例:同一工作簿不同表单特定数据添加到工作簿的另一表单里
|
2天前
|
自然语言处理 Java 编译器
为什么要看 Python 源码?它的结构长什么样子?
为什么要看 Python 源码?它的结构长什么样子?
8 2
|
2天前
|
Python
你知道 Python 如何解压缩数据吗
你知道 Python 如何解压缩数据吗
7 1
|
8天前
|
数据采集 数据挖掘 数据处理
Python中实现简单爬虫并处理数据
【9月更文挑战第31天】本文将引导读者理解如何通过Python创建一个简单的网络爬虫,并展示如何处理爬取的数据。我们将讨论爬虫的基本原理、使用requests和BeautifulSoup库进行网页抓取的方法,以及如何使用pandas对数据进行清洗和分析。文章旨在为初学者提供一个易于理解的实践指南,帮助他们快速掌握网络数据抓取的基本技能。
19 3
|
10天前
|
安全 Python
Python量化炒股的获取数据函数—get_industry()
Python量化炒股的获取数据函数—get_industry()
20 3
|
10天前
|
Python
Python量化炒股的获取数据函数—get_security_info()
Python量化炒股的获取数据函数—get_security_info()
21 1
|
1天前
|
XML JSON 前端开发
C#使用HttpClient四种请求数据格式:json、表单数据、文件上传、xml格式
C#使用HttpClient四种请求数据格式:json、表单数据、文件上传、xml格式
8 0
|
1天前
|
前端开发 JavaScript Python
Python Web应用中的WebSocket实战:前后端分离时代的实时数据交换
在前后端分离的Web应用开发模式中,如何实现前后端之间的实时数据交换成为了一个重要议题。传统的轮询或长轮询方式在实时性、资源消耗和服务器压力方面存在明显不足,而WebSocket技术的出现则为这一问题提供了优雅的解决方案。本文将通过实战案例,详细介绍如何在Python Web应用中运用WebSocket技术,实现前后端之间的实时数据交换。
7 0
|
1天前
|
存储 JSON 数据格式
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
5 0
|
2天前
|
存储 自然语言处理 编译器
Python 源文件编译之后会得到什么,它的结构是怎样的?和字节码又有什么联系?
Python 源文件编译之后会得到什么,它的结构是怎样的?和字节码又有什么联系?
17 0

热门文章

最新文章