MPP架构数据仓库使用问题之Visibility bitmap表被删除的文件信息是如何记录的

简介: MPP架构数据仓库使用问题之Visibility bitmap表被删除的文件信息是如何记录的

问题一:Level字段在ADB PG的Merge Tree中代表什么含义?


Level字段在ADB PG的Merge Tree中代表什么含义?


参考回答:

Level字段在ADB PG的Merge Tree中代表文件的合并层次。其中,0层代表实时写入的数据,这部分数据在合并时有更高的权重。Level值越大,表示该文件包含的数据越旧,合并时的权重越低。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672249



问题二:Physical file id和Stripe id在File Metadata表中分别有什么作用?


Physical file id和Stripe id在File Metadata表中分别有什么作用?


参考回答:

Physical file id在File Metadata表中用于唯一标识一个逻辑文件对应的oss物理文件。由于它不再与segment关联,因此需要全局唯一。Stripe id则是因为一个oss文件可以包含多个bucket的文件,以stripe为单位进行组织,方便在segment一次写入的多个bucket合并到一个oss文件中,避免oss小文件导致的性能下降和oss小文件爆炸问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672250



问题三:Visibility bitmap表是如何记录被删除的文件信息的?


Visibility bitmap表是如何记录被删除的文件信息的?


参考回答:

Visibility bitmap表通过physical_file_id、stripe_id、start_row、hash_bucket_id、delete_count和bitmap等字段来记录被删除的文件信息。其中,physical_file_id和stripe_id用于定位到具体的oss物理文件和其中的stripe;start_row表示delete bitmap对应的起始行号,每32k行对应一个delete bitmap;hash_bucket_id表示所属的hash bucket;delete_count表示该delete bitmap总共记录删除了多少行;bitmap字段则存储了delete bitmap的具体数值,采用压缩存储以节省空间。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672251



问题四:为什么要设计Visibility bitmap表来记录删除信息,而不是直接在oss上修改数据?


为什么要设计Visibility bitmap表来记录删除信息,而不是直接在oss上修改数据?


参考回答:

设计Visibility bitmap表来记录删除信息,而不是直接在oss上修改数据,主要有两个原因:一是可以避免访问oss带来的延迟,提高查询效率;二是oss对于访问的吞吐有限额,频繁访问可能导致触发oss的限流策略,影响系统稳定性。通过Visibility bitmap表,我们可以直接获取到需要合并的文件信息,避免了对oss的频繁访问。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672252



问题五:Mergetree结构的核心特点是什么?


Mergetree结构的核心特点是什么?


参考回答:

Mergetree结构的核心特点是通过后台merge的方式,将小文件合并成有序的大文件,并在合并过程中可以对数据进行重排,以优化数据的有序特性。与leveldb不同,Mergetree的0层实时写入数据会进行合并,不同bucket的文件会合并成大文件,并且这些文件会按照对应的stripe进行组织。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/672253

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
7月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
7月前
|
数据采集 存储 分布式计算
一文读懂数据中台架构,高效构建企业数据价值
在数字化时代,企业面临数据分散、难以统一管理的问题。数据中台架构通过整合、清洗和管理数据,打破信息孤岛,提升决策效率。本文详解其核心组成、搭建步骤及常见挑战,助力企业高效用数。
2224 24
|
10月前
|
存储 消息中间件 SQL
数据中台架构与技术体系
本文介绍了数据中台的整体架构设计,涵盖数据采集、存储、计算、服务及治理等多个层面。在数据采集层,通过实时与离线方式整合多类型数据源;存储层采用分层策略,包括原始层、清洗层、服务层和归档层,满足不同访问频率需求;计算层提供批处理、流处理、交互式分析和AI计算能力,支持多样化业务场景。数据服务层封装数据为标准化API,实现灵活调用,同时强调数据治理与安全,确保元数据管理、质量监控、权限控制及加密措施到位,助力企业构建高效、合规的数据管理体系。
2587 13
|
12月前
|
存储 数据采集 人工智能
AllData数据中台架构全览:数据时代的智慧中枢
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AllData数据中台架构全览:数据时代的智慧中枢
|
11月前
|
存储 SQL 并行计算
【赵渝强老师】达梦数据库MPP集群的架构
达梦数据库提供大规模并行处理(MPP)架构,以低成本实现高性能并行计算,满足海量数据存储和复杂查询需求。DM MPP采用完全对等无共享体系,消除主节点瓶颈,通过多节点并行执行提升性能。其执行流程包括主EP生成计划、分发任务、各EP并行处理及结果汇总返回。为确保高可用性,建议结合数据守护部署。
417 0
|
12月前
|
SQL 分布式计算 大数据
深度剖析数据中台架构图,铸造数字文明的基石
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
存储 数据采集 大数据
AllData数据中台技术架构升级演进
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AllData数据中台技术架构升级演进
|
存储 分布式计算 Hadoop
MPP 架构与 Hadoop 架构技术选型指南
MPP架构与Hadoop架构是处理海量数据的两大选择。MPP通过大规模并行处理实现快速查询响应,适用于企业级数据仓库和OLAP应用;Hadoop则以分布式存储和计算为核心,擅长处理非结构化数据和大数据分析。两者各有优劣,MPP适合结构化数据和高性能需求场景,而Hadoop在扩展性和容错性上表现更佳。选择时需综合考虑业务需求、预算和技术能力。
1430 14
|
监控 JavaScript 数据可视化
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
492 7
|
存储 人工智能 关系型数据库
AnalyticDB PostgreSQL版:Data+AI 时代的企业级数据仓库
AnalyticDB PostgreSQL版是面向Data+AI时代的企业级数据仓库,涵盖产品架构、核心技术、客户案例及功能发布四大部分。产品架构包括数据分析和AI/ML的存储与计算优化;核心技术涉及高性能实时引擎Beam、向量化执行引擎Laser及优化器Orca;客户案例展示了丝芙兰和领跑汽车的应用;新功能如pgsearch全文检索和In-Database AI/ML进一步提升了性能与易用性。
431 0