解锁Java并发编程的秘密武器!揭秘AQS,让你的代码从此告别‘锁’事烦恼,多线程同步不再是梦!

简介: 【8月更文挑战第25天】AbstractQueuedSynchronizer(AQS)是Java并发包中的核心组件,作为多种同步工具类(如ReentrantLock和CountDownLatch等)的基础。AQS通过维护一个表示同步状态的`state`变量和一个FIFO线程等待队列,提供了一种高效灵活的同步机制。它支持独占式和共享式两种资源访问模式。内部使用CLH锁队列管理等待线程,当线程尝试获取已持有的锁时,会被放入队列并阻塞,直至锁被释放。AQS的巧妙设计极大地丰富了Java并发编程的能力。

在Java的并发编程中,AbstractQueuedSynchronizer(简称AQS)是一个核心组件,它不仅是实现同步器的基础,也是并发包中多种锁(如ReentrantLock、CountDownLatch等)的底层实现。AQS通过其精巧的设计,为开发者提供了一种高效且灵活的同步机制。

AQS的核心概念
AQS是一个抽象类,全称为AbstractQueuedSynchronizer,它定义了一种基于FIFO(先进先出)队列的同步框架。AQS内部维护了一个volatile的state变量,用于表示同步状态。这个状态变量是AQS的核心,通过它来控制对共享资源的访问。当state为0时,表示没有线程持有锁;当state大于0时,表示有线程持有锁。

AQS支持两种资源共享模式:独占式和共享式。独占式模式下,每次只有一个线程能够持有锁,如ReentrantLock;而共享式模式下,允许多个线程同时访问共享资源,如ReentrantReadWriteLock的读锁部分。

AQS的内部结构
AQS内部使用了一个CLH(Craig, Landin, and Hagersten)队列来管理等待获取锁的线程。这个队列是一个双向链表,通过head和tail两个指针来维护队列的头部和尾部。每个节点(Node)代表一个等待获取锁的线程,节点中包含了线程引用、等待状态等信息。

AQS的工作原理
当一个线程尝试获取锁时,首先会检查state的值。如果state为0,表示当前没有线程持有锁,该线程将成功获取锁,并将state设置为1(或其他值,取决于具体实现)。如果state不为0,表示锁已被其他线程持有,当前线程将被放入等待队列中,并进入阻塞状态。

当持有锁的线程释放锁时,它会将state的值设置为0,并唤醒等待队列中的下一个线程。被唤醒的线程会再次尝试获取锁,如果成功,则继续执行;如果失败,则重新进入等待队列。

示例代码
下面是一个使用AQS实现简单互斥锁的示例代码:

java
import java.util.concurrent.locks.AbstractQueuedSynchronizer;

class Mutex {
private final Sync sync = new Sync();

public void lock() {  
    sync.acquire(1);  
}  

public void unlock() {  
    sync.release(1);  
}  

private static class Sync extends AbstractQueuedSynchronizer {  
    @Override  
    protected boolean tryAcquire(int acquires) {  
        return compareAndSetState(0, 1);  
    }  

    @Override  
    protected boolean tryRelease(int releases) {  
        setState(0);  
        return true;  
    }  

    @Override  
    protected boolean isHeldExclusively() {  
        return getState() == 1;  
    }  
}  

}

// 使用示例
public class Main {
public static void main(String[] args) {
Mutex mutex = new Mutex();

    // 线程1尝试获取锁  
    new Thread(() -> {  
        mutex.lock();  
        try {  
            // 模拟任务执行  
            Thread.sleep(1000);  
        } catch (InterruptedException e) {  
            e.printStackTrace();  
        } finally {  
            mutex.unlock();  
        }  
    }).start();  

    // 线程2尝试获取锁(将在线程1释放锁后获取)  
    new Thread(() -> {  
        mutex.lock();  
        try {  
            // 模拟任务执行  
            Thread.sleep(1000);  
        } catch (InterruptedException e) {  
            e.printStackTrace();  
        } finally {  
            mutex.unlock();  
        }  
    }).start();  
}  

}
在这个示例中,我们定义了一个名为Mutex的互斥锁类,它内部使用了一个继承自AbstractQueuedSynchronizer的Sync类来实现锁的逻辑。通过重写tryAcquire、tryRelease和isHeldExclusively方法,我们实现了简单的锁获取和释放逻辑。

AQS以其简洁而强大的设计,为Java并发编程提供了坚实的基础。通过理解AQS的工作原理,我们可以更加深入地掌握Java并发编程的精髓。

相关文章
|
28天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
26天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
11天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
1月前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
65 12
|
28天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
28天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
28天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
54 3
|
28天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
154 2
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
1月前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
63 3

热门文章

最新文章