Spark在供应链核算中应用问题之调整Spark读取ODPS离线表分区大小如何解决

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Spark在供应链核算中应用问题之调整Spark读取ODPS离线表分区大小如何解决

问题一:在供应链核算的Spark处理流程中,主要包含哪些主流程?


在供应链核算的Spark处理流程中,主要包含哪些主流程?


参考回答:

在供应链核算的Spark处理流程中,主要包含核算接入、记账、抛账等主流程。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/670664



问题二:调整Spark读取ODPS离线表分区大小的方法是什么?


调整Spark读取ODPS离线表分区大小的方法是什么?


参考回答:

可以通过设置spark.hadoop.odps.input.split.size来调整Spark读取ODPS离线表的分区大小,默认值为256M,需要根据当前分区的大小进行调整。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/670665



问题三:针对Lindorm数据源分区数量少导致Spark执行效率低的问题,有哪些处理策略?


针对Lindorm数据源分区数量少导致Spark执行效率低的问题,有哪些处理策略?


参考回答:

针对Lindorm数据源分区数量少导致Spark执行效率低的问题,有两种处理策略:一是进行重分区(repartition算子),但会触发shuffle,增加额外的IO成本;二是Lindorm进行预分区,但需要结合rowkey的设计一起使用,可能会影响scan的效率。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/670666



问题四:在Spark数据处理逻辑中,如何有效减少IO成本?


在Spark数据处理逻辑中,如何有效减少IO成本?


参考回答:

在Spark数据处理逻辑中,可以通过慎用效率低的算子(如groupBy)、尽量减少stage数量等方式来有效减少IO成本。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/670667



问题五:Spark提供了哪些主要参数来调整计算存储资源的使用情况?


Spark提供了哪些主要参数来调整计算存储资源的使用情况?


参考回答:

Spark提供了spark.executor.instances(设置Executor数量)、spark.executor.cores(每个Executor的核数)、spark.executor.memory(Executor内存)等参数来调整计算存储资源的使用情况。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/670668

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
机器学习/深度学习 分布式计算 大数据
Spark 适合解决多种类型的大数据处理问题
【9月更文挑战第1天】Spark 适合解决多种类型的大数据处理问题
41 3
|
2月前
|
存储 分布式计算 大数据
MaxCompute 数据分区与生命周期管理
【8月更文第31天】随着大数据分析需求的增长,如何高效地管理和组织数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个专为海量数据设计的计算服务,它提供了丰富的功能来帮助用户管理和优化数据。本文将重点讨论 MaxCompute 中的数据分区策略和生命周期管理方法,并通过具体的代码示例来展示如何实施这些策略。
106 1
|
2月前
|
分布式计算 大数据 Apache
跨越界限:当.NET遇上Apache Spark,大数据世界的新篇章如何谱写?
【8月更文挑战第28天】随着信息时代的发展,大数据已成为推动企业决策、科研与技术创新的关键力量。Apache Spark凭借其卓越的分布式计算能力和多功能数据处理特性,在大数据领域占据重要地位。然而,对于.NET开发者而言,如何在Spark生态中发挥自身优势成为一个新课题。为此,微软与Apache Spark社区共同推出了.NET for Apache Spark,使开发者能用C#、F#等语言编写Spark应用,不仅保留了Spark的强大功能,还融合了.NET的强类型系统、丰富库支持及良好跨平台能力,极大地降低了学习门槛并拓展了.NET的应用范围。
55 3
|
2月前
|
存储 分布式计算 供应链
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
|
2月前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。
|
2月前
|
分布式计算 供应链 数据处理
Spark在供应链核算中应用问题之帮助提升核算效率如何解决
Spark在供应链核算中应用问题之帮助提升核算效率如何解决
|
2月前
|
Java Spring API
Spring框架与GraphQL的史诗级碰撞:颠覆传统,重塑API开发的未来传奇!
【8月更文挑战第31天】《Spring框架与GraphQL:构建现代API》介绍了如何结合Spring框架与GraphQL构建高效、灵活的API。首先通过引入`spring-boot-starter-data-graphql`等依赖支持GraphQL,然后定义查询和类型,利用`@GraphQLQuery`等注解实现具体功能。Spring的依赖注入和事务管理进一步增强了GraphQL服务的能力。示例展示了从查询到突变的具体实现,证明了Spring与GraphQL结合的强大潜力,适合现代API设计与开发。
60 0
|
2月前
|
分布式计算 供应链 Java
Spark在供应链核算中应用问题之生成LogView地址失败如何解决
Spark在供应链核算中应用问题之生成LogView地址失败如何解决
|
3月前
|
机器学习/深度学习 分布式计算 算法
Spark快速大数据分析PDF下载读书分享推荐
《Spark快速大数据分析》适合初学者,聚焦Spark实用技巧,同时深入核心概念。作者团队来自Databricks,书中详述Spark 3.0新特性,结合机器学习展示大数据分析。Spark是大数据分析的首选工具,本书助你驾驭这一利器。[PDF下载链接][1]。 ![Spark Book Cover][2] [1]: https://zhangfeidezhu.com/?p=345 [2]: https://i-blog.csdnimg.cn/direct/6b851489ad1944548602766ea9d62136.png#pic_center
130 1
Spark快速大数据分析PDF下载读书分享推荐
|
2月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
177 3

热门文章

最新文章