【揭秘Hadoop YARN背后的奥秘!】从零开始,带你深入了解YARN资源管理框架的核心架构与实战应用!

简介: 【8月更文挑战第24天】Hadoop YARN(Yet Another Resource Negotiator)是Hadoop生态系统中的资源管理器,为Hadoop集群上的应用提供统一的资源管理和调度框架。YARN通过ResourceManager、NodeManager和ApplicationMaster三大核心组件实现高效集群资源利用及多框架支持。本文剖析YARN架构及组件工作原理,并通过示例代码展示如何运行简单的MapReduce任务,帮助读者深入了解YARN机制及其在大数据处理中的应用价值。

Hadoop YARN(Yet Another Resource Negotiator)是 Hadoop 生态系统中的资源管理器,它为运行在 Hadoop 集群上的应用程序提供了一个统一的资源管理和调度框架。本文将深入探讨 YARN 的基础架构,分析其核心组件的工作原理,并通过示例代码展示如何使用 YARN 运行一个简单的 MapReduce 任务。

YARN 的设计目标是提高集群资源利用率,支持多种计算框架。在 YARN 架构中,主要包括 ResourceManager、NodeManager 和 ApplicationMaster 三个核心组件。

ResourceManager 是集群资源管理的核心,它负责集群资源的分配和调度。NodeManager 是每个节点上的代理,负责容器的生命周期管理,监控容器资源使用情况,并向 ResourceManager 报告。ApplicationMaster 是每个应用程序的管理器,它负责应用程序的生命周期管理,包括向 ResourceManager 申请资源、与 NodeManager 协调容器启动/停止等。

ResourceManager 的职责

ResourceManager 包含两个主要的组件:Scheduler 和 Applications Manager。Scheduler 负责集群资源的分配,它根据策略将资源分配给不同的应用程序。Applications Manager 负责接收来自客户端的作业提交请求,为每个作业启动 ApplicationMaster,并监控其生命周期。

NodeManager 的职责

NodeManager 是每个节点上的服务,它负责容器的启动、监控和关闭。NodeManager 与 ResourceManager 保持心跳通信,报告节点上的资源使用情况,并接收来自 ResourceManager 的指令。

ApplicationMaster 的职责

ApplicationMaster 是每个应用程序的管理器,它负责为应用程序申请资源,并与 NodeManager 协调容器的启动和停止。ApplicationMaster 还负责监控应用程序的状态,确保任务能够正常运行。

示例代码:运行 MapReduce 任务

以下是一个简单的 Java 示例,展示如何使用 YARN 运行一个 MapReduce 任务:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCount {
   

    public static class TokenizerMapper
            extends Mapper<Object, Text, Text, IntWritable> {
   

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
   
            String[] words = value.toString().split("\\s+");
            for (String w : words) {
   
                word.set(w);
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> {
   
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context) throws IOException, InterruptedException {
   
            int sum = 0;
            for (IntWritable val : values) {
   
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
   
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

总结

YARN 作为 Hadoop 的下一代计算框架,为运行在 Hadoop 集群上的应用程序提供了一个灵活、高效的资源管理和调度框架。通过对 ResourceManager、NodeManager 和 ApplicationMaster 的深入分析,我们可以更好地理解 YARN 的工作原理,并利用 YARN 运行复杂的 MapReduce 任务。随着大数据技术的发展,YARN 已经成为处理大规模数据集的重要工具之一。

相关文章
|
2月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
204 6
|
3月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
3月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
411 0
|
2月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
4月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
240 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
4月前
|
人工智能 自然语言处理 JavaScript
Github又一AI黑科技项目,打造全栈架构,只需一个统一框架?
Motia 是一款现代化后端框架,融合 API 接口、后台任务、事件系统与 AI Agent,支持 JavaScript、TypeScript、Python 多语言协同开发。它提供可视化 Workbench、自动观测追踪、零配置部署等功能,帮助开发者高效构建事件驱动的工作流,显著降低部署与运维成本,提升 AI 项目落地效率。
362 0
|
4月前
|
机器学习/深度学习 数据采集 存储
技术赋能下的能源智慧管理:MyEMS 开源系统的架构创新与应用深化
在全球能源转型与“双碳”战略推动下,MyEMS作为基于Python的开源能源管理系统,凭借模块化架构与AI技术,助力重点用能单位实现数字化、智能化能源管理。系统支持多源数据采集、智能分析、设备数字孪生与自适应优化控制,全面满足国家级能耗监测要求,并已在制造、数据中心、公共建筑等领域成功应用,助力节能降碳,推动绿色可持续发展。
119 0
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
699 3
YARN(Hadoop操作系统)的架构
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
454 1
使用YARN命令管理Hadoop作业
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
251 3