【揭秘Hadoop YARN背后的奥秘!】从零开始,带你深入了解YARN资源管理框架的核心架构与实战应用!

简介: 【8月更文挑战第24天】Hadoop YARN(Yet Another Resource Negotiator)是Hadoop生态系统中的资源管理器,为Hadoop集群上的应用提供统一的资源管理和调度框架。YARN通过ResourceManager、NodeManager和ApplicationMaster三大核心组件实现高效集群资源利用及多框架支持。本文剖析YARN架构及组件工作原理,并通过示例代码展示如何运行简单的MapReduce任务,帮助读者深入了解YARN机制及其在大数据处理中的应用价值。

Hadoop YARN(Yet Another Resource Negotiator)是 Hadoop 生态系统中的资源管理器,它为运行在 Hadoop 集群上的应用程序提供了一个统一的资源管理和调度框架。本文将深入探讨 YARN 的基础架构,分析其核心组件的工作原理,并通过示例代码展示如何使用 YARN 运行一个简单的 MapReduce 任务。

YARN 的设计目标是提高集群资源利用率,支持多种计算框架。在 YARN 架构中,主要包括 ResourceManager、NodeManager 和 ApplicationMaster 三个核心组件。

ResourceManager 是集群资源管理的核心,它负责集群资源的分配和调度。NodeManager 是每个节点上的代理,负责容器的生命周期管理,监控容器资源使用情况,并向 ResourceManager 报告。ApplicationMaster 是每个应用程序的管理器,它负责应用程序的生命周期管理,包括向 ResourceManager 申请资源、与 NodeManager 协调容器启动/停止等。

ResourceManager 的职责

ResourceManager 包含两个主要的组件:Scheduler 和 Applications Manager。Scheduler 负责集群资源的分配,它根据策略将资源分配给不同的应用程序。Applications Manager 负责接收来自客户端的作业提交请求,为每个作业启动 ApplicationMaster,并监控其生命周期。

NodeManager 的职责

NodeManager 是每个节点上的服务,它负责容器的启动、监控和关闭。NodeManager 与 ResourceManager 保持心跳通信,报告节点上的资源使用情况,并接收来自 ResourceManager 的指令。

ApplicationMaster 的职责

ApplicationMaster 是每个应用程序的管理器,它负责为应用程序申请资源,并与 NodeManager 协调容器的启动和停止。ApplicationMaster 还负责监控应用程序的状态,确保任务能够正常运行。

示例代码:运行 MapReduce 任务

以下是一个简单的 Java 示例,展示如何使用 YARN 运行一个 MapReduce 任务:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCount {
   

    public static class TokenizerMapper
            extends Mapper<Object, Text, Text, IntWritable> {
   

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
   
            String[] words = value.toString().split("\\s+");
            for (String w : words) {
   
                word.set(w);
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> {
   
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context) throws IOException, InterruptedException {
   
            int sum = 0;
            for (IntWritable val : values) {
   
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
   
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

总结

YARN 作为 Hadoop 的下一代计算框架,为运行在 Hadoop 集群上的应用程序提供了一个灵活、高效的资源管理和调度框架。通过对 ResourceManager、NodeManager 和 ApplicationMaster 的深入分析,我们可以更好地理解 YARN 的工作原理,并利用 YARN 运行复杂的 MapReduce 任务。随着大数据技术的发展,YARN 已经成为处理大规模数据集的重要工具之一。

相关文章
|
2月前
|
人工智能 监控 安全
NTP网络子钟的技术架构与行业应用解析
在数字化与智能化时代,时间同步精度至关重要。西安同步电子科技有限公司专注时间频率领域,以“同步天下”品牌提供可靠解决方案。其明星产品SYN6109型NTP网络子钟基于网络时间协议,实现高精度时间同步,广泛应用于考场、医院、智慧场景等领域。公司坚持技术创新,产品通过权威认证,未来将结合5G、物联网等技术推动行业进步,引领精准时间管理新时代。
|
3月前
|
Web App开发 Linux 数据库
Omnissa Horizon 8 2503 (ESB Release) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2503 (ESB Release) - 虚拟桌面基础架构 (VDI) 和应用软件
225 8
Omnissa Horizon 8 2503 (ESB Release) - 虚拟桌面基础架构 (VDI) 和应用软件
|
1月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
551 7
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
|
3月前
|
人工智能 JavaScript 开发工具
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。
3061 66
|
2月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
89 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
1月前
|
消息中间件 存储 大数据
阿里云消息队列 Kafka 架构及典型应用场景
阿里云消息队列 Kafka 是一款基于 Apache Kafka 的分布式消息中间件,支持消息发布与订阅模型,满足微服务解耦、大数据处理及实时流数据分析需求。其通过存算分离架构优化成本与性能,提供基础版、标准版和专业版三种 Serverless 版本,分别适用于不同业务场景,最高 SLA 达 99.99%。阿里云 Kafka 还具备弹性扩容、多可用区部署、冷热数据缓存隔离等特性,并支持与 Flink、MaxCompute 等生态工具无缝集成,广泛应用于用户行为分析、数据入库等场景,显著提升数据处理效率与实时性。
|
2月前
|
缓存 算法 网络协议
IP代理技术原理深度解析:从基础架构到应用实践
IP代理是网络通信中的关键技术,通过构建中间层实现请求转发与信息过滤。其核心价值体现在身份伪装、访问控制和性能优化三个方面。文章详细解析了HTTP与SOCKS协议的工作机制,探讨了代理服务器从传统单线程到分布式集群的技术演进,并分析了在网络爬虫、跨境电商及企业安全等场景的应用。同时,面对协议识别、性能瓶颈和隐私合规等挑战,提出了多种解决方案。未来,IP代理将融合边缘计算、AI驱动优化及量子安全加密等趋势,持续发展为支撑现代互联网的重要基础设施。
161 2
|
7月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
8月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
186 3
|
3月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
239 12

热门文章

最新文章