Python 装饰器“高级”使用

简介: 本文聚焦两个有意思的点1. 无参和有参装饰器。 @deco vs @deco(arg1,arg2)。2. 多层装饰器场景。

本文聚焦两个有意思的点

  1. 无参和有参装饰器。 @deco vs @deco(arg1,arg2)。
  2. 多层装饰器场景。

无参和有参装饰器

大部分文章,都会学习到无参有参装饰器写法。这里不赘述,直接上兼容括号和无括号注解 (无参 vs 有参),高级+灵活。

# 兼容有括号和无括号装饰器
def log3(func=None, /, *, text=None):
    """
    @log 装饰器(兼容有参和无参)
    三层嵌套.
    === f = log('text')(f) , f() 实际是 wrapper()
    :param text:
    :return:
    """
    def decorator(f):  # =~ 上面的 log 方法
        @functools.wraps(f)
        def wrapper(*args, **kw):
            t0 = time.time()
            print('[%s] start call %s at %s' % (text, f.__name__,
                                                time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(t0))))
            # 调用目标方法本身
            ret = f(*args, **kw)
            t1 = time.time()
            print('[%s] end call %s at %s, cost time: %s s' % (text, f.__name__,
                                                               time.strftime(
                                                                   '%Y-%m-%d %H:%M:%S', time.localtime(t1)),
                                                               t1-t0))
            return ret
        return wrapper
    
    # 判断 func 是否是函数
    if inspect.isfunction(func):
        # 无括号
        print('deco nopars')
        return decorator(func)  # 记忆诀窍, 无括号, 要补上
    return decorator
@log3
def tarFun3_nopar():
    print("tar Fun3 executing - nopar")
@log3(text='log333333')
def tarFun3_haspar():
    print("tar Fun3 executing - haspar")
# tarFun3_nopar()
tarFun3_haspar()

要点:

装饰器代码里三层函数。里面判断是否是无参调用还是调用,准确的说是不带括号调用还是带括号调用,根据不同是否方式,返回对应的函数。


分隔符 /,* 含义:

  • / , 分割符号,前面表示只能是位置参数。这就限制了 func 参数只能位置参数传入,而不能通过 func=x 传入。
  • , 后面的参数只能是k-v传参。


有这两个分隔符参数限制,可以避免调用传参导致的错误。

多层装饰器场景

看例子

def deco1(func):
    print("deco1")
    def deco1_wrapper(*args, **kwargs):
        print("deco1 wrapper", func)
        return func(*args, **kwargs)
    return deco1_wrapper
def deco2(func):
    print("deco2")
    def deco2_wrapper(*args, **kwargs):
        print("deco2 wrapper", func)
        return func(*args, **kwargs)
    return deco2_wrapper
@deco1
@deco2
def mult_deco():
    print("mult_deco")
mult_deco()
# ---
deco2  -- 解释执行期间打印
deco1  -- 解释执行期间打印
deco1 wrapper <function deco2.<locals>.deco2_wrapper at 0x000002A514699C60>
deco2 wrapper <function mult_deco at 0x000002A514699BC0>
mult_deco

解释期间,注解由下到上解释(执行)。距离目标方法最近的注解先被解释执行,可以理解为由内而外。


要点:类似洋葱

  1. 解释期间,由内而外
  2. 执行期间,由外而内

剥洋葱 @functools.wrap

另外,例子中发现 deco1 装饰器里 func 打印字符是 deco2_wrapper 字样。很容易理解,根据洋葱定律,外层包裹的是内层的,故 deco1 包裹的自然是 deco2 deco2_wrapper 方法。


那该怎么保留或获取原始被包裹方法的信息呢?


来,让我们剥洋葱!


这就需要借助工具:@functools.wrap

import functools
def deco1(func):
    print("deco1")
    @functools.wraps(func)  # 如果我最外层使用, 可以不剥, 剥是为了将原始函数信息暴漏给更外层的
    def deco1_wrapper(*args, **kwargs):
        print("deco1 wrapper", func)  # 这里 func 由于里层装饰器剥了一遍洋葱, 故而这里拿到的是原始函数 mult_deco 信息
        return func(*args, **kwargs)
    return deco1_wrapper
def deco2(func):
    print("deco2")
    @functools.wraps(func)  # 虽然返回的deco2_wrapper, 但函数信息却是剥过洋葱后的, 即原始函数 mult_deco
    def deco2_wrapper(*args, **kwargs):
        print("deco2 wrapper", func)
        return func(*args, **kwargs)
    return deco2_wrapper
@deco1
@deco2
def mult_deco():
    print("mult_deco")
mult_deco()
deco2
deco1
deco1 wrapper <function mult_deco at 0x0000023387C19C60>
deco2 wrapper <function mult_deco at 0x0000023387C19BC0>
mult_deco


@functools.wrap 详细原理,这里不深究了,只附带介绍下它的现象。


要点:自定义装饰器推荐必带 @functools.wrap 装饰器。


作者:Nisus

链接:https://juejin.cn/post/7398520872179843072

相关文章
|
28天前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。
|
29天前
|
测试技术 数据安全/隐私保护 开发者
探索Python中的装饰器:从基础到高级应用
装饰器在Python中是一个强大且令人兴奋的功能,它允许开发者在不修改原有函数代码的前提下增加额外的功能。本文将通过具体代码示例,带领读者从装饰器的基础概念入手,逐步深入到高级用法,如带参数的装饰器和装饰器嵌套等。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。
|
29天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
35 6
|
17天前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
31 5
|
1月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
40 11
|
28天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
38 7
|
27天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
28天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
48 6
|
27天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
28天前
|
测试技术 开发者 Python
深入理解Python装饰器:从基础到高级应用
本文旨在为读者提供一个全面的Python装饰器指南,从其基本概念讲起,逐步深入探讨其高级应用。我们将通过实例解析装饰器的工作原理,并展示如何利用它们来增强函数功能、控制程序流程以及实现代码的模块化。无论你是Python初学者还是经验丰富的开发者,本文都将为你提供宝贵的见解和实用的技巧,帮助你更好地掌握这一强大的语言特性。
34 4