LeetCode第9题回文数

简介: 该文章介绍了 LeetCode 第 9 题回文数的解法,通过分析回文数的特征,只需反转一半数字进行比较即可,时间复杂度可降至 O(n/2),并总结了该题与整数反转有关,需根据回文数特征来解决。

继续打卡算法题,今天学习的是第LeetCode第9题回文数,这道题目是道简单题。算法题的一些解题思路和技巧真的非常巧妙,每天看一看算法题和解题思路,我相信对我们的编码能力有一些帮助。

image.png

分析一波题目

看完题目,我们很容易想到,只要把数字反过来,然后两个相比就可以了,这个时候时间复杂度是O(n),我们再仔细想一下,一个回文数,我们只要将反过来的一半比较就可以知道是不是回文数了,大家想一下是不是这个道理。比如1221, 我们只要把21反转和12比较,这个时候已经知道是不是回文了,也就没必要反转整个数字,因此时间复杂度可以降到O(n/2),因此反转一半就是解决这个题目的诀窍了。

编码解决


class Solution {
   
   
    public boolean isPalindrome(int x) {
   
   
        // 特殊情况处理:
        // 如上所述,当 x < 0 时,x 不是回文数。
        // 同样地,如果数字的最后一位是 0,为了使该数字为回文,
        // 则其第一位数字也应该是 0
        // 只有 0 满足这一属性
        if (x < 0 || (x % 10 == 0 && x != 0)) {
   
   
            return false;
        }

        int revertedNumber = 0;
        //这里为什么是x > revertedNumber,因为如果是回文的话反转了一半了就不满足这个条件
        //如果是回文,计算到中位数 如果是12321 计算到x=12,如果是1221 计算到12
        while (x > revertedNumber) {
   
   
            revertedNumber = revertedNumber * 10 + x % 10;
            x /= 10;
        }

        // 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
        // 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
        // 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
        return x == revertedNumber || x == revertedNumber / 10;

    }
}

总结

这个题目和整数反转有关,如果知道整数反转的思路,我们多分析一下回文的特征,就可以想到解决方案。

记录下回文数的特征:

只要反转右半边的数字,左右两半的数字相同这个原始的数就是回文数。

相关文章
|
8月前
|
算法 Java
[Java·算法·简单] LeetCode 9. 回文数 详细解读
[Java·算法·简单] LeetCode 9. 回文数 详细解读
114 0
|
8月前
|
Go
golang力扣leetcode 479.最大回文数乘积
golang力扣leetcode 479.最大回文数乘积
46 0
|
C语言
【Leetcode-1.两数之和 -3.无重复字符的最长子串 -9.回文数(C语言)】
【Leetcode-1.两数之和 -3.无重复字符的最长子串 -9.回文数(C语言)】
43 0
|
3月前
|
算法
LeetCode回文数(暴力解,求更好的思路)
这篇博客讨论了如何判断一个整数是否为回文数,提供了暴力解法的代码,并寻求更优的算法建议。
57 1
LeetCode回文数(暴力解,求更好的思路)
|
8月前
leetcode代码记录(回文数
leetcode代码记录(回文数
65 1
【力扣-TS解题】1、回文数
【力扣-TS解题】1、回文数
57 0
|
8月前
【力扣】9. 回文数
【力扣】9. 回文数
|
8月前
|
算法 Java
[Java·算法·简单] LeetCode 9. 回文数 详细解读
[Java·算法·简单] LeetCode 9. 回文数 详细解读
51 0
|
8月前
|
算法 Java