阿里泛日志设计与实践问题之在写多查少的降本场景下,通过SLS Scan方案降低成本,如何实现

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 阿里泛日志设计与实践问题之在写多查少的降本场景下,通过SLS Scan方案降低成本,如何实现

问题一:传统grep上云场景面临哪些挑战?SLS日志存储方案如何解决这些挑战?


传统grep上云场景面临哪些挑战?SLS日志存储方案如何解决这些挑战?


参考回答:

传统grep上云场景面临的挑战包括日志文件的存储、管理和查询效率问题。企业通常将日志文件进行logrotate并压缩存储在云盘上,查询时需要在云盘上找到对应的目录和文件,然后执行grep/zgrep命令进行单机查找,这种方式效率低下且不易管理。

SLS日志存储方案通过高性能采集器(Logtail)将日志实时采集到日志库存储,支持冷热分层存储,按TTL自动删除旧数据,并支持数据转储OSS长周期存储。同时,SLS Scan支持对存储的热、冷分层数据进行硬扫描搜索,查找延迟大大低于单机形式的解压缩后grep,从而解决了传统grep上云场景的挑战。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655457



问题二:写多查少的降本场景是什么样的?


写多查少的降本场景是什么样的?


参考回答:

写多查少的降本场景指的是在程序日志查询、Debug场景下,日志写入量很大但查询频率较低的情况。例如,当前开启了SLS 100%数量的索引字段,但经过业务判断发现只有20%的字段被经常使用,希望通过合理使用降低日志的IT支出。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655458



问题三:在写多查少的降本场景下,如何通过SLS Scan方案降低成本?


在写多查少的降本场景下,如何通过SLS Scan方案降低成本?


参考回答:

在写多查少的降本场景下,可以通过SLS Scan方案降低成本。具体做法是,对业务上明确规划的日志字段和高频使用的日志字段设置索引,明确类型,基于索引和列存进行查询和分析。对于低频日志字段或不明确的字段,不配置索引,查询需求通过SLS Scan在运行时完成计算,从而降低了存储和计算成本。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655459



问题四:不定schema场景对日志查询和分析提出了哪些挑战?SLS Scan提供了哪些解决方案?


不定schema场景对日志查询和分析提出了哪些挑战?SLS Scan提供了哪些解决方案?


参考回答:

不定schema场景对日志查询和分析提出了挑战,因为日志库的数据字段频繁变化,可能包括K8s微服务多个应用的容器日志收集到一个日志库里、业务升级后程序日志字段发生变更等情况。这种情况下,通过固定schema方式查询、分析较为困难,需要频繁变更索引schema,整体协调成本高且容易遗漏。

对于不定schema场景,SLS Scan提供了灵活的解决方案。业务上明确规划的日志字段和高频使用的日志字段可以设置索引并明确类型,基于索引和列存进行查询和分析。对于低频日志字段或不明确的字段,不配置索引,查询需求通过SLS Scan在运行时完成计算。这样,即使在数据字段频繁变化的情况下,也能保证日志查询和分析的灵活性和效率。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655460



问题五:在Java 8的Lambda表达式中,ArrayList.stream()方法是如何生成Stream对象的?


在Java 8的Lambda表达式中,ArrayList.stream()方法是如何生成Stream对象的?


参考回答:

ArrayList.stream()方法实际上调用的是StreamSupport.stream(spliterator(), false)。这里,spliterator()方法生成了一个IteratorSpliterator对象,然后StreamSupport.stream方法使用这个Spliterator对象和一个指示是否为并行的布尔值(在这个例子中为false)来创建一个ReferencePipeline.Head对象,这个对象就是Stream对象的开始。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655461

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
11天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
116 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
216 3
|
1月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1625 14
|
1月前
|
Python
log日志学习
【10月更文挑战第9天】 python处理log打印模块log的使用和介绍
30 0
|
2月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
45 2
|
1月前
|
数据可视化
Tensorboard可视化学习笔记(一):如何可视化通过网页查看log日志
关于如何使用TensorBoard进行数据可视化的教程,包括TensorBoard的安装、配置环境变量、将数据写入TensorBoard、启动TensorBoard以及如何通过网页查看日志文件。
192 0
|
1月前
|
存储 分布式计算 NoSQL
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
40 0
|
1月前
|
缓存 Linux 编译器
【C++】CentOS环境搭建-安装log4cplus日志组件包及报错解决方案
通过上述步骤,您应该能够在CentOS环境中成功安装并使用log4cplus日志组件。面对任何安装或使用过程中出现的问题,仔细检查错误信息,对照提供的解决方案进行调整,通常都能找到合适的解决之道。log4cplus的强大功能将为您的项目提供灵活、高效的日志管理方案,助力软件开发与维护。
54 0
|
2月前
|
Java
日志框架log4j打印异常堆栈信息携带traceId,方便接口异常排查
日常项目运行日志,异常栈打印是不带traceId,导致排查问题查找异常栈很麻烦。
|
2月前
|
存储 监控 数据可视化
SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
【9月更文挑战第2天】SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
150 9