通义语音AI技术问题之语义VAD模型对于传统VAD模型的问题如何解决

简介: 通义语音AI技术问题之语义VAD模型对于传统VAD模型的问题如何解决

问题一:语义VAD模型是如何解决传统VAD模型的问题的?


语义VAD模型是如何解决传统VAD模型的问题的?


参考回答:

语义VAD模型通过在传统的VAD模型中添加一个帧级标点预测任务来解决传统模型的问题。如果检测到一个结束标点(例如句号、问号),表明存在完整的语义断点,等待一个较短的尾部静音(例如400毫秒)则进行断句。这大大减少了不必要的延时,并提高了语义的完整性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656737



问题二:语义VAD模型采用了哪些技术来提高性能?


语义VAD模型采用了哪些技术来提高性能?


参考回答:

语义VAD模型采用了多任务训练框架,引入了标点预测和自动语音识别(ASR)任务来增强VAD训练中的语义信息学习。在实际应用中,根据实时率或离线系统对准确率的需求,可以选择基于RWKV的模型结构或通义语音实验室自研的SAN-M Chunk结构。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656738



问题三:热词定制化技术的主要目的是什么?


热词定制化技术的主要目的是什么?


参考回答:

热词定制化技术的主要目的是解决通用语音识别模型在实际应用中遇到的人名地名与专有名词识别不正确的问题。通过预设热词列表的方式,该技术能够增强这些词汇的识别,提高识别准确率。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656739



问题四:SeACo-Paraformer在热词定制化上相对于传统技术的优势是什么?


SeACo-Paraformer在热词定制化上相对于传统技术的优势是什么?


参考回答:

SeACo-Paraformer在热词定制化上的优势在于其将热词建模功能从ASR decoder中解耦,通过显式的热词损失函数引导热词建模。这使得热词召回率较Clas模型显著提升,并且解耦了ASR模型训练与热词模型训练,使训练过程更灵活。内部工业数据对比实验表明,SeACo-Paraformer模型在热词召回率上得到了约18%的提升。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656740


问题五:在端到端语音识别模型中,时间戳预测面临的主要挑战是什么?


在端到端语音识别模型中,时间戳预测面临的主要挑战是什么?


参考回答:

在端到端语音识别模型中,时间戳预测面临的主要挑战是无法像传统基于HMM的模型那样天然地在解码器中获取输出token的时间戳。CTC/Transducer模型面临尖峰偏移的问题,而Transformer/LAS模型进行非帧同步的解码,因此不能直接获取时间戳。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656741

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
打赏
0
0
0
0
45
分享
相关文章
Vibe Draw:涂鸦秒变3D模型!开源AI建模神器解放创意生产力
Vibe Draw 是一款基于AI技术的开源3D建模工具,通过Next.js和FastAPI构建,能将用户绘制的2D草图智能转化为3D模型,并支持文本提示优化和场景构建。
100 35
Vibe Draw:涂鸦秒变3D模型!开源AI建模神器解放创意生产力
智谱AI新突破!GLM-Z1-Rumination:新一代沉思模型,推动AI助手进入"高智商+高自主"的新阶段
GLM-Z1-Rumination是智谱推出的新一代沉思模型,通过扩展强化学习训练实现长程推理能力,支持动态工具调用与自我验证机制,显著提升AI自主研究能力。
41 13
智谱AI新突破!GLM-Z1-Rumination:新一代沉思模型,推动AI助手进入"高智商+高自主"的新阶段
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
66 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。像 Manus 这样基于「预先编排好的提示词与工具路径」构成的工作流智能体,短期或许表现不错,但长期必然遇到瓶颈。这种「提示驱动」的方式无法扩展,也无法真正处理那些需要长期规划、多步骤推理的复杂任务。下一代真正的LLM智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现的。
56 10
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
标签噪声下的模型评估:如何准确评估AI模型的真实性能,提高模型性能测量的可信度
本文探讨了测试数据标签错误对模型性能评估的影响,分析了如何估计模型的“真实”准确率。通过图像分类案例,揭示了标签噪声与模型性能间的复杂关系。当模型错误与标签错误独立时,真实准确率通常高于测量值;但实际中两者常相关,导致真实准确率更接近下限。文章提出通过深入错误分析、评估相关性和多标注等方式优化性能评估,强调理解这些关系对提升模型可信度的重要性。
15 2
标签噪声下的模型评估:如何准确评估AI模型的真实性能,提高模型性能测量的可信度
使用 Ollama 本地模型与 Spring AI Alibaba 的强强结合,打造下一代 RAG 应用
使用 Ollama 本地模型与 Spring AI Alibaba 的强强结合,打造下一代 RAG 应用
AI引爆全美失业潮?通义灵码助你开发路上不孤单!
达沃斯调查显示,超4成老板计划2025-2030年因AI自动化削减员工。首当其冲的是软件工程行业,Anthropic CEO称AI可能在12个月内接管几乎所有代码编写工作。面对这一变革,程序员应如何应对?通义灵码作为基于通义大模型的AI研发辅助工具,提供代码生成、智能问答等功能,助力开发者适应AI原生研发新范式。现可直接参与项目,完成未实现功能!
手把手体验通义灵码2.0:AI程序员如何让我从“调参侠”进阶“架构师”?
通义灵码2.0是一款强大的AI编程工具,帮助开发者从“调参侠”进阶为“架构师”。它通过跨语言开发支持、智能单元测试生成和图生代码等功能,大幅提升开发效率。例如,将Python数据处理函数一键转为React+ECharts组件,自动生成单元测试用例,甚至通过草图生成前端布局代码。此外,新增的QwQ模型具备“代码脑补”能力,可推荐性能优化策略。尽管功能强大,但仍需注意环境隔离与代码审查,避免过度依赖。通义灵码2.0不仅是工具,更是开发者的“外接大脑”。
49 8
阿里云 AI 搜索开放平台新发布:增加 QwQ 模型
阿里云 AI 搜索开放平台 新增加 QwQ 模型,将为企业和开发者带来更强大的搜索解决方案。
Java程序员在AI时代必会的技术:Spring AI
在AI时代,Java程序员需掌握Spring AI技术以提升竞争力。Spring AI是Spring框架在AI领域的延伸,支持自然语言处理、机器学习集成与自动化决策等场景。它简化开发流程,无缝集成Spring生态,并提供对多种AI服务(如OpenAI、阿里云通义千问)的支持。本文介绍Spring AI核心概念、应用场景及开发步骤,含代码示例,助你快速入门并构建智能化应用,把握AI时代的机遇。

热门文章

最新文章