空间点与直线距离算法
目录
1. 原理推导
令空间中点A与点B组成向量−−→ABAB→,向量外有一点P,那么我们要求的就是P与直线−−→ABAB→的距离d。
连接点A与点P,得直线向量−−→APAP→。将向量−−→ABAB→与−−→APAP→叉乘,根据向量叉乘的几何意义,|−−→AB×−−→AP||AB→×AP→|实际上是一个平行四边形面积,如下图所示:
根据平行四边形公式,很显然我们要求的d就是这个平行四边形的高,也就是:
d=|−−→AB×−−→AP||−−→AB|d=|AB→×AP→||AB→|
2. 具体实现
直到了原理,具体的实现就很简单了,只要套公式就可以了。其中^是个自己重载实现的求叉乘的操作:
double CalDistancePointAndLine(Vec3d &point, Vec3d &lineBegin, Vec3d &lineEnd) { //直线方向向量 Vec3d n = lineEnd -lineBegin; //直线上某一点的向量到点的向量 Vec3d m = point - lineBegin; return (n ^ m).length() / n.length(); }
3. 参考
分类: 计算几何