前言
前面介绍了冒泡排序、选择排序、插入排序、希尔排序,作为排序中经常用到了算法,还有堆排序、快速排序、归并排序
堆排序(HeaSort)
堆排序的概念
堆排序是一种有效的排序算法,它利用了完全二叉树的特性。在C语言中,堆排序通常通过构建一个最大堆(或最小堆),然后逐步调整堆结构,最终实现排序。
代码实现
堆排序是一种基于二叉堆的排序算法,它通过将待排序的元素构建成一个二叉堆,然后逐步移除堆顶元素并将其放置在数组的尾部,同时维护堆的性质,直至所有元素都被排序。
注意:第一个for循环中的(n-1-1)/ 2 的含义
- 第一个减1是由n-1个元素
- 第二个减1是除以2是父亲节点。以为我们调整的是每一个根节点。(非叶子节点)
//堆排序 void HeapSort(int* a, int n) { //建堆 for(int i = (n - 1 - 1) / 2; i >= 0; i--) { AdjustDown(a,n,i); } //排序 int end = n - 1; while(end > 0) { Swap(&a[end], &a[0]); AdjustDown(a, end, 0); --end; } }
其中AdjustDown是建立堆的函数,我们要建立一个大堆,将替换到上上面的小值,向下调整,保持大堆的结构。
代码如下:
//向下调整 void AdjustDown(int* a, int n, int parent) { int child = parent * 2 + 1; while (child < n) { if (child + 1 < n && a[child + 1] > a[child]) { child++; } if (a[parent] < a[child]) { Swap(&a[parent], &a[child]); parent = child; child = parent * 2 + 1; } else { break; } } }
堆排序的复杂度分析
堆排序是一种常用的排序算法,其时间复杂度通常为O(nlogn)
。在C语言中实现堆排序时,时间复杂度的分析主要涉及到两个阶段:构建初始堆和进行堆排序。
- 构建初始堆:从最后一个非叶子节点开始,逐步向上调整,直到根节点满足堆的性质。这个过程的时间复杂度为
O(n)
,因为需要对每个非叶子节点进行一次调整。 - 进行堆排序:堆排序的过程涉及到多次交换堆顶元素和最后一个元素,并对剩余的元素进行调整。每次交换后,堆的大小减一,并对新的堆顶元素进行调整。这个过程的时间复杂度为
O(nlogn)
,因为每次调整的时间复杂度为O(logn)
,总共需要进行n-1
次调整。
快速排序(Quick Sort)
快速排序的概念
快速排序(Quick Sort)是一种高效的排序算法,它的基本思想是通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后再分别对这两部分记录继续进行排序,以达到整个序列有序的目的。在C语言中,快速排序的实现通常涉及到递归函数的编写,以及对数组进行分区(partition)操作。
霍尔版本(hoare)
在这里我们是要,定义一个关键字(keyi)进行分区,然后分别向左右进行递归。
代码实现
int part1(int* a, int left, int right) { int mid = GetmidNum(a,left,right); Swap(&a[left], &a[mid]); int keyi = left; while (left < right) { while (left < right && a[right] >= a[keyi]) right--; while (left < right && a[left] <=a[keyi]) left++; Swap(&a[left], &a[right]); } Swap(&a[keyi], &a[left]); keyi = left; return keyi; }
挖坑法
挖坑法类似于霍尔方法,挖坑就是记住关键字,保证关键字就是一个坑位,比关键字值小(大)的时候就入坑位,此时,这个值位置作为新的坑位直至两个前后指针指向同一个坑位。
代码实现
int part2(int* a, int left, int right) { int mid = GetmidNum(a, left, right); Swap(&a[left], &a[mid]); int keyi = a[left]; int hole = left; while (left < right) { while (left < right && a[right] >= keyi) right--; Swap(&a[hole], &a[right]); hole = right; while (left < right && a[left] <= keyi) left++; Swap(&a[hole], &a[left]); hole = left; } Swap(&keyi, &a[hole]); keyi = left; return keyi; }
前后指针法
prev
指针初始化为数组的开始位置,cur
指针初始化为prev
的下一位置。cur
指针向前遍历数组,寻找小于或等于基准值的元素,而prev
指针则跟随cur
指针的移动,直到cur
找到一个小于基准值的元素。- 一旦找到这样的元素,
prev
和cur
指针之间的元素都会被交换,然后cur
指针继续向前移动,直到找到下一个小于基准值的元素,或者到达数组的末尾。最后,基准值会被放置在prev
指针当前的位置,完成一次排序
代码实现
int part3(int* a, int left, int right) { int mid = GetmidNum(a, left, right); Swap(&a[left], &a[mid]); int keyi = left; int cur = left + 1; int prev = left; while (cur <= right) { while (a[cur] < a[keyi] && ++prev != cur) Swap(&a[cur], &a[prev]); ++cur; } Swap(&a[prev], &a[keyi]); keyi = prev; return keyi; }
递归实现
以上都是递归方法,通过调用分区进行排序。
void QuickSort(int* a, int left, int right) { if (left >= right) return; int key = part3(a, left, right); QuickSort(a, left, key - 1); QuickSort(a, key + 1, right); }
快速排序迭代实现(利用栈)参考:栈和队列
基本步骤
- 初始化栈:创建一个空栈,用于存储待排序子数组的起始和结束索引。
- 压栈:将整个数组的起始和结束索引作为一对入栈。
- 循环处理,在栈非空时,重复以下步骤:
- 弹出一对索引(即栈顶元素)来指定当前要处理的子数组。
- 选择子数组的一个元素作为枢轴(pivot)进行分区。
- 进行分区操作,这会将子数组划分为比枢轴小的左侧部分和比枢轴大的
代码实现
void QuickSortNonR(int* a, int left, int right) { ST st; STInit(&st); STpush(&st, left); STpush(&st, right); while (!STEmpty(&st)) { int end = STTop(&st); STPop(&st); int begin = STTop(&st); STPop(&st); int keyi = part3(a, begin, end); if (keyi + 1 < end) { STpush(&st, keyi + 1); STpush(&st, end); } if (begin < keyi - 1) { STpush(&st, begin); STpush(&st, keyi - 1); } } STDestroy(&st); }
快速排序的优化
优化角度从两个方面切入
- 在选择关键字的(基准值)时候,如果我们碰到了,有序数组,那么就会,减低排序效率。
- 方法一:三数取中,即区三个关键字先进行排序,将中间数作为关键字,一般取左端右端和中间值。
- 方法二:随机值。利用随机数生成。
三数取中代码实现
int GetmidNum(int* a, int begin, int end) { int mid = (begin + end) / 2; if (a[begin] < a[mid]) { if (a[mid] < a[end]) { return mid; } else if(a[end]<a[begin]) { return begin; } else { return end; } } else //a[begin]>a[mid] { if (a[begin] < a[end]) { return begin; } else if (a[end] < a[mid]) { return mid; } else { return end; } }
随机选 key(下标) 代码实现
srand(time(0)); int randi = left + (rand() % (right - left)); Swap(&a[left], &a[randi]);
快速排序复杂度分析
- 在平均情况下,快速排序的时间复杂度为O(n log n),这是因为每次划分都能够将数组分成大致相等的两部分,从而实现高效排序。在最坏情况下,快速排序的时间复杂度为O(n^2)
- 除了递归调用的栈空间之外,不需要额外的存储空间,因此空间复杂度是O(log n)。在最坏情况下,快速排序的时间复杂度可能是 O(n),这是因为在最坏情况下,递归堆栈空间可能会增长到线性级别。
根据上述描述,优化快速排序是必要的。
归并排序(Merge Sort)
归并排序的概念
归并排序(Merge Sort)是一种基于分治策略的排序算法,它将待排序的序列分为两个或以上的子序列,对这些子序列分别进行排序,然后再将它们合并为一个有序的序列。归并排序的基本思想是将待排序的序列看作是一系列长度为1的有序序列,然后将相邻的有序序列段两两归并,形成长度为2的有序序列,以此类推,最终得到一个长度为n的有序序列。
基本操作:
- 分解:将序列每次折半划分,递归实现,直到子序列的大小为1。
- 合并:将划分后的序列段两两合并后排序。在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。这两个有序序列段分别为
R[low, mid]
和R[mid+1, high]
。先将他们合并到一个局部的暂存数组R2
中,合并完成后再将R2
复制回R
中。
代码实现(递归)
void _MergeSort(int* a, int* tmp, int begin, int end) { if (begin >= end) return; int mid = (begin + end) / 2; _MergeSort(a, tmp, begin, mid - 1); _MergeSort(a, tmp, mid + 1, end); int begin1 = begin, end1 = mid; int begin2 = mid + 1, end2 = end; int i = begin; while (begin1 <= end1 && begin2 <= end2) { if (a[begin1] > a[begin2]) { tmp[i++] = a[begin2++]; } else { tmp[i++] = a[begin1++]; } } while (begin1 <= end1) { tmp[i++] = a[begin1++]; } while (begin2 <= end2) { tmp[i++] = a[begin2++]; } memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1)); } void MergeSort(int* a, int n) { int* tmp = (int*)malloc(sizeof(int) * n); if (tmp == NULL) { perror("malloc fail"); return; } _MergeSort(a, tmp, 0, n-1); free(tmp); }
代码实现(迭代)
void MergeSortNonR(int* a, int n) { int* tmp = (int*)malloc(sizeof(int) * n); if (tmp == NULL) { perror("malloc fail"); return; } int gap = 1; while (gap < n) { for (int i = 0; i < n; i =2* gap) { int begin1 = i, end1 = i + gap - 1; int begin2 = i + gap, end2 = i + 2 * gap - 1; int j = i; if (end1 >= n || begin2 >= n) { break; } if (end2 >= n) { end2 = n-1; } while (begin1 <= end1 && begin2 <= end2) { if (a[begin1] < a[begin2]) { tmp[j++] = a[begin1++]; } else { tmp[j++] = a[begin2++]; } } while (begin1 <= end1) { tmp[j++] = a[begin1++]; } while (begin2 <= end2) { tmp[j++] = a[begin2++]; } memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1)); } gap *= 2; } free(tmp); }
归并排序复杂度分析
- 时间复杂度是 O(n log n),其中 n 是待排序元素的数量。这个时间复杂度表明,归并排序的执行速度随着输入大小的增加而线性增加,但不会超过对数级的增长。
- 空间复杂度为 O(n),在数据拷贝的时候malloc一个等大的数组。
总结
p[j++] = a[begin2++];
}
}
while (begin1 <= end1) { tmp[j++] = a[begin1++]; } while (begin2 <= end2) { tmp[j++] = a[begin2++]; } memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1)); } gap *= 2; } free(tmp);
## 归并排序复杂度分析 * 时间复杂度是 O(n log n),其中 n 是待排序元素的数量。这个时间复杂度表明,归并排序的执行速度随着输入大小的增加而线性增加,但不会超过对数级的增长。 * 空间复杂度为 O(n),在数据拷贝的时候malloc一个等大的数组。 # 总结 ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/direct/8d8d45e2fc8b4b0fa4747b27d20cd50c.png)