【Python-Keras】keras.layers.Lambda解析与使用

本文涉及的产品
云解析DNS-重点域名监控,免费拨测 20万次(价值200元)
简介: 【8月更文挑战第1天】keras.layers.Lambda解析与使用

1 作用

Lambda表达式: 用一行代码去表示一个函数,简化和美观代码。

keras.layers.Lambda(): 是Lambda表达式的应用。指定在神经网络模型中,如果某一层需要通过一个函数去变换数据,那利用keras.layers.Lambda()这个函数单独把这一步数据操作命为单独的一Lambda层。

2 参数解析

keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None)

参数

  • function:要实现的函数,该函数仅接受一个变量,即神经网络上一层的输出

  • output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出shape的函数

  • mask: 掩膜

  • arguments:可选,是字典格式,用来传参

3 举例

3.1 传参举例

arguments参数,利用字典格式来传参

# index是参数,
def slice(x,index):
    return x[:,:,index]

# 通过字典将参数index = 0传递进去
x1 = Lambda(slice,output_shape=(4,1),arguments={'index':0})(a)
# 通过字典将参数index = 1 传递进去
x2 = Lambda(slice,output_shape=(4,1),arguments={'index':1})(a)

3.2 简单Demo

from keras.layers import Lambda
from keras.models import Input, Model
import numpy as np

## 第一步 定义模型
# 初始化两个输入形参
a = Input(shape=(2, ))
b = Input(shape=(2, ))

# 定义lambda要执行的函数
def minus(inputs):
    x, y = inputs
    return (x+y)
# 使用lambda表达式,对函数进行传参
minus_layer = Lambda(minus, name='minus')([a, b])
model = Model(inputs=[a, b], outputs=[minus_layer])

## 第二步 测试模型
# 随便定义的两个数组
v0 = np.array([5, 2])
v1 = np.array([8, 4])
# 转成1*2的矩阵后测试模型
print(model.predict([v0.reshape(1, 2), v1.reshape(1, 2)]))

3.3 利用Lambda表达式实现某层数据的切片

Lambda传参数
参考文档:keras Lambda自定义层实现数据的切片,Lambda传参数

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation,Reshape
from keras.layers import merge
from keras.utils.visualize_util import plot
from keras.layers import Input, Lambda
from keras.models import Model

def slice(x,index):
        return x[:,:,index]

a = Input(shape=(4,2))
x1 = Lambda(slice,output_shape=(4,1),arguments={'index':0})(a)
x2 = Lambda(slice,output_shape=(4,1),arguments={'index':1})(a)
x1 = Reshape((4,1,1))(x1)
x2 = Reshape((4,1,1))(x2)
output = merge([x1,x2],mode='concat')
model = Model(a, output)
x_test = np.array([[[1,2],[2,3],[3,4],[4,5]]])
print model.predict(x_test)
plot(model, to_file='lambda.png',show_shapes=True)

上述代码实现的是,将矩阵的每一列提取出来,然后单独进行操作,最后在拼在一起。可视化的图如下所示。

1.png

目录
相关文章
|
2月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
180 0
|
2月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
3月前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
3月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
242 2
|
3月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
719 0
|
3月前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
770 0
机器学习/深度学习 算法 自动驾驶
537 0
|
3月前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
650 0
|
3月前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
1023 2
|
3月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
244 0

推荐镜像

更多