Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 在 Python 编程中,掌握图的深度优先遍历(DFS)和广度优先遍历(BFS)是进阶的关键。这两种算法不仅理论重要,还能解决实际问题。本文介绍了图的基本概念、邻接表表示方法,并给出了 DFS 和 BFS 的 Python 实现代码示例,帮助读者深入理解并应用这些算法。

Python 编程的进阶之路上,掌握图的深度优先遍历(Depth-First Search,简称 DFS)和广度优先遍历(Breadth-First Search,简称 BFS)是至关重要的一步。这两种遍历算法不仅在理论上具有重要意义,在实际应用中也能解决许多复杂的问题。接下来,让我们一起深入学习这两种算法。

首先,我们来了解一下图的基本概念。图由顶点(Vertex)和边(Edge)组成,可以分为有向图和无向图。为了在 Python 中表示图,我们可以使用邻接表或者邻接矩阵的方式。

下面是使用邻接表表示无向图的 Python 代码示例:

class Graph:
    def __init__(self):
        self.graph = {
   }

    def add_edge(self, u, v):
        if u in self.graph:
            self.graph[u].append(v)
        else:
            self.graph[u] = [v]

        if v in self.graph:
            self.graph[v].append(u)
        else:
            self.graph[v] = [u]

有了图的表示,接下来实现 DFS 算法。

def dfs(graph, start, visited=None):
    if visited is None:
        visited = set()
    visited.add(start)
    print(start)
    for neighbor in graph[start]:
        if neighbor not in visited:
            dfs(graph, neighbor, visited)

为了更好地理解 DFS,假设我们有一个简单的图,顶点为 1 到 5,边为 (1, 2), (1, 3), (2, 4), (2, 5) 。

g = Graph()
g.add_edge(1, 2)
g.add_edge(1, 3)
g.add_edge(2, 4)
g.add_edge(2, 5)

print("DFS 遍历:")
dfs(g.graph, 1)

接下来是 BFS 算法的实现。

from collections import deque

def bfs(graph, start):
    visited = {
   start}
    queue = deque([start])

    while queue:
        vertex = queue.popleft()
        print(vertex)

        for neighbor in graph[vertex]:
            if neighbor not in visited:
                visited.add(neighbor)
                queue.append(neighbor)

同样对于上述的图,进行 BFS 遍历:

print("BFS 遍历:")
bfs(g.graph, 1)

在实际应用中,DFS 常用于查找路径、判断图是否连通等问题。而 BFS 则常用于求最短路径、层次遍历等情况。

通过以上的详细讲解和示例代码,相信您对图的 DFS 和 BFS 遍历有了更深入的理解。不断地练习和应用这些知识,您将在 Python 编程的道路上更上一层楼,逐渐成为 Python 大神!

相关文章
|
18天前
|
测试技术 开发者 Python
深入浅出:Python中的装饰器解析与应用###
【10月更文挑战第22天】 本文将带你走进Python装饰器的世界,揭示其背后的魔法。我们将一起探索装饰器的定义、工作原理、常见用法以及如何自定义装饰器,让你的代码更加简洁高效。无论你是Python新手还是有一定经验的开发者,相信这篇文章都能为你带来新的启发和收获。 ###
12 1
|
18天前
|
设计模式 测试技术 开发者
Python中的装饰器深度解析
【10月更文挑战第24天】在Python的世界中,装饰器是那些能够为函数或类“添彩”的魔法工具。本文将带你深入理解装饰器的概念、工作原理以及如何自定义装饰器,让你的代码更加优雅和高效。
|
2天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
14 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
66 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
59 0
|
1月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
80 0
|
3天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
15天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
36 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
53 5