利用迁移学习加速AI模型训练

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
注册配置 MSE Nacos/ZooKeeper,118元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 【7月更文第29天】迁移学习是一种强大的技术,允许我们利用已经训练好的模型在新的相关任务上进行快速学习。这种方法不仅可以显著减少训练时间和计算资源的需求,还能提高模型的准确率。本文将详细介绍如何利用迁移学习来加速AI模型的训练,并通过具体的案例研究来展示其在计算机视觉和自然语言处理领域的应用。

摘要

迁移学习是一种强大的技术,允许我们利用已经训练好的模型在新的相关任务上进行快速学习。这种方法不仅可以显著减少训练时间和计算资源的需求,还能提高模型的准确率。本文将详细介绍如何利用迁移学习来加速AI模型的训练,并通过具体的案例研究来展示其在计算机视觉和自然语言处理领域的应用。

1. 什么是迁移学习?

迁移学习是一种机器学习方法,其中从一个任务中学习到的知识被转移到另一个任务中。在深度学习领域,通常的做法是从一个大规模数据集(例如ImageNet)上预先训练好的神经网络开始,然后将其用于不同的但相关的任务。这个过程可以通过两种主要方式完成:

  1. 特征提取:仅使用预训练模型的特征提取部分,并在新任务上训练一个新的分类器。
  2. 微调:调整预训练模型的一部分或全部层以适应新任务。

2. 计算机视觉中的迁移学习

2.1 使用预训练模型进行特征提取

2.1.1 示例代码

import tensorflow as tf
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# 加载预训练的VGG16模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# 冻结基础模型的所有层
for layer in base_model.layers:
    layer.trainable = False

# 添加自定义的顶层
x = Flatten()(base_model.output)
x = Dense(256, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# 构建最终的模型
model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])

# 数据生成器
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)

# 加载数据
train_generator = train_datagen.flow_from_directory('path/to/train_data', target_size=(224, 224), batch_size=32, class_mode='categorical')
validation_generator = test_datagen.flow_from_directory('path/to/validation_data', target_size=(224, 224), batch_size=32, class_mode='categorical')

# 训练模型
model.fit(train_generator, epochs=10, validation_data=validation_generator)

2.2 微调预训练模型

2.2.1 示例代码

# 解冻最后几个卷积块
for layer in base_model.layers[-4:]:
    layer.trainable = True

# 重新编译模型
model.compile(optimizer=Adam(learning_rate=0.00001), loss='categorical_crossentropy', metrics=['accuracy'])

# 继续训练模型
model.fit(train_generator, epochs=10, validation_data=validation_generator)

3. 自然语言处理中的迁移学习

3.1 使用预训练模型进行特征提取

3.1.1 示例代码

import transformers
from transformers import BertTokenizer, TFBertModel
import tensorflow as tf

# 加载预训练的BERT模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertModel.from_pretrained('bert-base-uncased')

# 准备输入文本
text = "Here is some text to classify"
input_ids = tokenizer.encode(text, return_tensors='tf')
attention_mask = tf.cast(input_ids != tokenizer.pad_token_id, tf.int32)

# 获取特征向量
outputs = model(input_ids, attention_mask=attention_mask)
last_hidden_states = outputs.last_hidden_state

# 构建分类器
classification_head = tf.keras.Sequential([
    tf.keras.layers.Dense(768, activation='relu'),
    tf.keras.layers.Dropout(0.1),
    tf.keras.layers.Dense(2, activation='softmax')
])

# 获取句子级别的表示
pooled_output = last_hidden_states[:, 0]
logits = classification_head(pooled_output)

# 构建最终模型
final_model = tf.keras.Model(inputs=input_ids, outputs=logits)

# 编译模型
final_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=2e-5), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])

# 训练模型
final_model.fit([input_ids, attention_mask], labels, epochs=3, batch_size=16)

3.2 微调预训练模型

3.2.1 示例代码

# 直接使用预训练模型进行微调
final_model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')

# 编译模型
final_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=2e-5), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])

# 训练模型
final_model.fit([input_ids, attention_mask], labels, epochs=3, batch_size=16)

4. 结论

迁移学习是一种非常有效的策略,可以显著降低AI模型开发的成本和时间。通过利用现有的预训练模型,我们可以更快地适应新任务,并达到更高的准确性。无论是在计算机视觉还是自然语言处理领域,迁移学习都是一个值得探索的强大工具。

5. 参考资料

  • [1] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT.
  • [2] Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.
  • [3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going Deeper with Convolutions. In CVPR.
  • [4] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training. OpenAI Blog.

目录
相关文章
|
3天前
|
人工智能 安全 算法
PAI负责任的AI解决方案: 安全、可信、隐私增强的企业级AI
在《PAI可信AI解决方案》会议中,分享了安全、可信、隐私增强的企业级AI。会议围绕三方面展开:首先通过三个案例介绍生活和技术层面的挑战;其次阐述构建AI的关键要素;最后介绍阿里云PAI的安全功能及未来展望,确保数据、算法和模型的安全与合规,提供全方位的可信AI解决方案。
|
26天前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
74 2
【AI系统】感知量化训练 QAT
|
26天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
44 1
【AI系统】训练后量化与部署
|
4天前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
18 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
2月前
|
人工智能 自然语言处理 前端开发
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
VideoChat 是一款智能音视频内容解读助手,支持批量上传音视频文件并自动转录为文字。通过 AI 技术,它能快速生成内容总结、详细解读和思维导图,并提供智能对话功能,帮助用户更高效地理解和分析音视频内容。
127 6
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
|
24天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
60 8
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI驱动的个性化学习路径优化
在当前教育领域,个性化学习正逐渐成为一种趋势。本文探讨了如何利用人工智能技术来优化个性化学习路径,提高学习效率和质量。通过分析学生的学习行为、偏好和表现,AI可以动态调整学习内容和难度,实现真正的因材施教。文章还讨论了实施这种技术所面临的挑战和潜在的解决方案。
85 7
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
76 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。