探索Spring AI:将人工智能与软件开发无缝融合

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 这是一个简单的Spring AI入门示例,演示了如何使用Spring Boot和Spring AI来构建一个简单的机器学习应用程序。通过这个示例,你可以了解到如何利用Spring AI轻松地集成机器学习功能到你的应用程序中。

在代码丛林里起舞,机器心头跃奇想。

算法智慧无穷尽,微笑图像也能拍。

神经元火花闪烁亮,数据湖里游泳快。

机器学习如炼金,寻找金子在硬盘里找。

深度学习是热门话题,让神经网络飞上天。

机器人们开会议,讨论世界要怎样变。

人类自恋不安分,AI研究人最聪明。

但请记住,电力断,AI也只是个铁皮箱。

2024年,V哥觉得再不研究AI,就out了,在当今快速发展的技术时代,人工智能(AI)已经成为各行各业的关键驱动力。而作为一种领先的Java应用开发框架,Spring Framework在软件开发领域享有盛誉。现在,随着Spring AI的崭露头角,我们看到了两者之间的令人兴奋的交汇点。Spring AI正在推动软件开发者将AI集成到他们的应用程序中,实现更智能、更高效的解决方案。

1. Spring AI简介

Spring AI是一种新兴的技术范畴,它结合了Spring Framework的灵活性和人工智能的强大能力。它为开发人员提供了一套丰富的工具和库,使他们能够轻松地集成AI功能到他们的Spring应用程序中。

2. Spring AI的特性

2.1 自然语言处理(NLP)支持

Spring AI提供了丰富的自然语言处理工具,开发人员可以利用这些工具来处理文本数据、执行情感分析、实现语音识别等功能。这为开发语言处理应用提供了强大的支持。

2.2 机器学习集成

Spring AI使得机器学习模型的集成变得更加简单。开发人员可以轻松地将训练好的模型嵌入到他们的Spring应用程序中,并利用这些模型进行预测、分类、聚类等任务。

2.3 图像识别和计算机视觉

Spring AI还提供了丰富的图像处理和计算机视觉功能。开发人员可以利用这些功能来实现图像识别、目标检测、图像分割等任务,从而为他们的应用程序增加更多的智能。

3. Spring AI的优势

3.1 简化集成流程

Spring AI为开发人员提供了简单易用的API和工具,使得将人工智能功能集成到Spring应用程序中变得轻而易举。开发人员不再需要深入研究AI技术的细节,就可以快速实现复杂的AI功能。

3.2 提高开发效率

通过利用Spring AI提供的丰富功能和工具,开发人员可以更快地开发出功能强大的应用程序。这样可以大大缩短开发周期,提高开发效率。

3.3 增强应用智能性

集成人工智能功能可以使得应用程序更加智能化。通过利用Spring AI提供的自然语言处理、机器学习、图像识别等功能,开发人员可以为他们的应用程序增加更多的智能,提升用户体验。

4. 使用示例:智能客服系统

假设我们要开发一个智能客服系统,可以通过自然语言处理理解用户的问题,并给出相应的解答。利用Spring AI,我们可以轻松地实现这一功能。我们可以使用Spring AI提供的自然语言处理工具来处理用户输入的文本,然后利用机器学习模型来预测用户问题的意图,最终给出相应的回答。

5. 小结一下

Spring AI为软件开发人员提供了一个强大的工具箱,使他们能够轻松地将人工智能功能集成到他们的应用程序中。通过利用Spring AI提供的丰富功能和工具,开发人员可以更快地开发出功能强大、智能化的应用程序,从而提高用户体验,推动业务发展。Spring AI的崛起标志着人工智能与软件开发之间的深度融合,这将在未来带来更多创新和机遇。

6. 举个例子

以下是一个简单的Spring AI入门程序示例,演示了如何使用Spring Boot和Spring AI(以TensorFlow为例)来构建一个简单的机器学习应用程序。这个示例程序将训练一个简单的线性回归模型,并提供一个RESTful API来进行预测。

首先,确保你已经安装了Java JDK和Maven。然后,创建一个新的Spring Boot项目,并添加所需的依赖。

<!-- pom.xml -->
<dependencies>
    <!-- Spring Boot Starter Web -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- Spring AI -->
    <dependency>
        <groupId>org.springframework.experimental</groupId>
        <artifactId>spring-native</artifactId>
        <version>0.10.1</version>
    </dependency>
    <dependency>
        <groupId>org.tensorflow</groupId>
        <artifactId>tensorflow</artifactId>
        <version>2.9.0</version>
    </dependency>
</dependencies>

接下来,创建一个简单的线性回归模型,并将其保存到文件中。

// LinearRegressionModel.java
import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.TensorFlow;

import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;

public class LinearRegressionModel {
   
    public static void main(String[] args) throws Exception {
   
        float[] xs = {
   0, 1, 2, 3, 4, 5};
        float[] ys = {
   0, 2, 4, 6, 8, 10};

        Graph graph = new Graph();
        try (Session session = new Session(graph)) {
   
            float[] m = {
   0};
            float[] b = {
   0};

            // Training loop
            for (int i = 0; i < 100; i++) {
   
                try (Tensor x = Tensor.create(xs);
                     Tensor y = Tensor.create(ys)) {
   
                    session.runner()
                            .feed("x", x)
                            .feed("y", y)
                            .fetch("update")
                            .run();
                }

                session.runner()
                        .fetch("m/read")
                        .fetch("b/read")
                        .run();
                m = session.runner().fetch("m/read").run().get(0).copyTo(new float[1]);
                b = session.runner().fetch("b/read").run().get(0).copyTo(new float[1]);
            }

            // Save the trained model
            Files.write(Paths.get("linear_model", "m.txt"), String.valueOf(m[0]).getBytes());
            Files.write(Paths.get("linear_model", "b.txt"), String.valueOf(b[0]).getBytes());
        }
    }
}

创建一个RESTful Controller来加载模型并进行预测。

// PredictionController.java
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;

@RestController
public class PredictionController {
   
    @GetMapping("/predict")
    public float predict(@RequestParam float x) throws Exception {
   
        float m = Float.parseFloat(new String(Files.readAllBytes(Paths.get("linear_model", "m.txt"))));
        float b = Float.parseFloat(new String(Files.readAllBytes(Paths.get("linear_model", "b.txt"))));

        return m * x + b;
    }
}

最后,创建一个Spring Boot应用程序的入口类。

// Application.java
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application {
   
    public static void main(String[] args) {
   
        SpringApplication.run(Application.class, args);
    }
}

现在,你可以运行这个Spring Boot应用程序,并使用 /predict API来进行预测。

$ curl localhost:8080/predict?x=3

这将返回预测值,根据我们的模型,应该是6。

这是一个简单的Spring AI入门示例,演示了如何使用Spring Boot和Spring AI来构建一个简单的机器学习应用程序。通过这个示例,你可以了解到如何利用Spring AI轻松地集成机器学习功能到你的应用程序中。

相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
3天前
|
传感器 人工智能 监控
AI与物联网的融合:开启智能化未来的新篇章
AI与物联网的融合:开启智能化未来的新篇章
125 96
|
3天前
|
人工智能 自动驾驶 机器人
AI元年:2024年人工智能发展大事纪
3分钟了解2024年人工智能AI领域都发生了哪些改变我们生活和生产方式的大事儿。
47 2
AI元年:2024年人工智能发展大事纪
|
3天前
|
人工智能 自然语言处理 算法
打破AI信息差:2024年20款好用的人工智能工具大盘点
本文带你了解20款值得一试的AI工具,帮助你在内容创作、图像设计、音频视频编辑等领域提高效率、激发创意。
37 1
打破AI信息差:2024年20款好用的人工智能工具大盘点
|
12天前
|
人工智能 前端开发 Java
Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!
本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。
203 0
|
8天前
|
人工智能 安全 搜索推荐
新手指南:人工智能poe ai 怎么用?国内使用poe记住这个方法就够了!
由于国内网络限制,许多用户在尝试访问Poe AI时面临障碍。幸运的是,现在国内用户也能轻松畅玩Poe AI,告别繁琐的设置,直接开启AI创作之旅!🎉
54 13
|
5天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
25天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
17天前
|
人工智能 关系型数据库 OLAP
通义百炼融合AnalyticDB,10分钟创建网站AI助手
本文介绍了如何在百炼平台上创建和配置AI助手,使其能够准确回答公司产品的相关问题。主要步骤包括:开通管理控制台、创建应用并部署示例网站、配置知识库、上传产品介绍数据、创建AnalyticDB PostgreSQL实例、导入知识文件、启用知识检索增强功能,并最终测试AI助手的回答效果。通过这些步骤,AI助手可以从提供通用信息转变为精准回答特定产品问题。实操完成后,还可以释放实例以节省费用。
|
5天前
|
人工智能 Cloud Native 数据管理
数据+AI融合趋势洞察暨阿里云OpenLake解决方案发布
Forrester是全球领先的市场研究与咨询机构,专注于新兴技术在各领域的应用。本文探讨如何加速现代数据管理,推动人工智能与客户业务的融合创新。面对数据标准缺乏、多云环境复杂性、新兴业务场景及过多数据平台等挑战,Forrester提出构建AI就绪的数据管理基石,通过互联智能框架、全局数据管理和DataOps、端到端数据管理能力、AI赋能的数据管理以及用例驱动的策略,帮助企业实现数据和AI的深度融合,提升业务价值并降低管理成本。