Transformers 4.37 中文文档(四十一)(2)

简介: Transformers 4.37 中文文档(四十一)

Transformers 4.37 中文文档(四十一)(1)https://developer.aliyun.com/article/1565233


LongT5EncoderModel

class transformers.LongT5EncoderModel

<来源>

( config: LongT5Config )

参数

  • config (LongT5Config) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸 LONGT5 模型 transformer 输出编码器的原始隐藏状态,没有特定的头部。

LongT5 模型是由 Mandy Guo、Joshua Ainslie、David Uthus、Santiago Ontanon、Jianmo Ni、Yun-Hsuan Sung 和 Yinfei Yang 在LongT5: Efficient Text-To-Text Transformer for Long Sequences中提出的。它是一个在文本到文本去噪生成设置中预训练的编码器-解码器 transformer。LongT5 模型是 T5 模型的扩展,它可以使用两种不同的高效注意机制之一 - (1) 本地注意力,或者(2) 瞬时-全局注意力。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。LongT5 是一个带有相对位置嵌入的模型,因此您应该能够在右侧和左侧都填充输入。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    要了解有关如何为预训练准备 input_ids 的更多信息,请查看 LONGT5 Training。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在 [0, 1]
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中的选定头部失效的掩码。掩码值选定在 [0, 1]
  • 1 表示头部未被掩码,
  • 0 表示头部被掩码。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,则这很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含各种元素,具体取决于配置(LongT5Config)和输入。

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列输出。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组。
    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

LongT5EncoderModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
...     100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state

JAXHide JAX content

FlaxLongT5Model

class transformers.FlaxLongT5Model

<来源>

( config: LongT5Config input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__

<来源>

( input_ids: Array attention_mask: Optional = None decoder_input_ids: Array = None decoder_attention_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)jnp.ndarray)- 词汇表中输入序列令牌的索引。LongT5 是一个具有相对位置嵌入的模型,因此您应该能够在右侧和左侧填充输入。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
    要了解有关如何为预训练准备input_ids的更多信息,请查看长 T5 训练。
  • attention_mask(形状为(batch_size, sequence_length)jnp.ndarray可选)- 用于避免在填充令牌索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 对于未被masked的令牌为 1。
  • 对于被masked的令牌为 0。
  • 什么是注意力掩码?
  • decoder_input_ids(形状为(batch_size, target_sequence_length)jnp.ndarray可选)- 词汇表中解码器输入序列令牌的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是解码器输入 ID?
    LONGT5 使用pad_token_id作为decoder_input_ids生成的起始令牌。如果使用了past_key_values,可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。
    要了解有关如何为预训练准备decoder_input_ids的更多信息,请查看长 T5 训练。
  • decoder_attention_mask(形状为(batch_size, target_sequence_length)jnp.ndarray可选)- 默认行为:生成一个张量,忽略decoder_input_ids中的填充令牌。因果掩码也将默认使用。
  • encoder_outputstuple(tuple(jnp.ndarray)可选)- 元组包含(last_hidden_state可选hidden_states可选attentionslast_hidden_state的形状为(batch_size, sequence_length, hidden_size),是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • past_key_values(长度为config.n_layerstuple(tuple(jnp.ndarray)),每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的张量)- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。
    如果使用了past_key_values,用户可以选择仅输入最后一个decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或tuple(torch.FloatTensor)

transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(LongT5Config)和输入的不同元素。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每一层的输出)。
    解码器在每一层的隐藏状态加上初始嵌入输出。
  • decoder_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray可选) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每一层的输出)。
    编码器在每一层的隐藏状态加上初始嵌入输出。
  • encoder_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxLongT5PreTrainedModel的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxLongT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5Model.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="np"
... ).input_ids
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
encode

<来源>

( input_ids: Array attention_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。LongT5 是一个具有相对位置嵌入的模型,因此您应该能够在右侧和左侧都填充输入。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    要了解如何为预训练准备input_ids,请查看长 T5 训练。
  • attention_mask (jnp.ndarray,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于未被masked的标记为 1,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请查看返回张量下的attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False)包含根据配置()和输入而异的各种元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列输出。
  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
decode

<来源>

( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状为(batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是解码器输入 ID?
    在训练中,应提供decoder_input_ids
  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包括(last_hidden_stateoptionalhidden_statesoptionalattentions) last_hidden_state的形状为(batch_size, sequence_length, hidden_size)optional)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • encoder_attention_mask (jnp.ndarray,形状为(batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。选择的掩码值为[0, 1]
  • 对于未被掩码的标记,为 1,
  • 对于被掩码的标记为 0。
  • 什么是注意力掩码?
  • decoder_attention_mask (jnp.ndarray,形状为(batch_size, target_sequence_length)optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下还将使用因果掩码。
    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
  • past_key_values (Dict[str, np.ndarray]optional,由init_cache返回或传递先前的past_key_values时返回) — 预先计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置()和输入的不同元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
    如果仅使用past_key_values,则输出形状为(batch_size, 1, hidden_size)的序列的最后隐藏状态。
  • past_key_values (tuple(tuple(jnp.ndarray)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回 — 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True,还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中,如果config.is_encoder_decoder=True,可以使用(查看past_key_values输入)来加速顺序解码。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=True或传递config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每个层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=True或传递config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.add_cross_attention=True或传递config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits


Transformers 4.37 中文文档(四十一)(3)https://developer.aliyun.com/article/1565235

相关文章
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十一)(8)
Transformers 4.37 中文文档(四十一)
28 2
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十二)(6)
Transformers 4.37 中文文档(四十二)
34 5
|
4月前
|
存储 自然语言处理 算法框架/工具
Transformers 4.37 中文文档(四十一)(4)
Transformers 4.37 中文文档(四十一)
193 3
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(四十二)(5)
Transformers 4.37 中文文档(四十二)
44 4
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十一)(7)
Transformers 4.37 中文文档(四十一)
27 2
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十九)(4)
Transformers 4.37 中文文档(四十九)
22 2
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十一)(5)
Transformers 4.37 中文文档(四十一)
22 0
|
4月前
|
机器学习/深度学习 存储 PyTorch
Transformers 4.37 中文文档(五十二)(3)
Transformers 4.37 中文文档(五十二)
32 0
|
4月前
|
XML 测试技术 数据格式
Transformers 4.37 中文文档(四十二)(4)
Transformers 4.37 中文文档(四十二)
34 3
|
4月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(四十二)(3)
Transformers 4.37 中文文档(四十二)
22 2