Transformers 4.37 中文文档(四十一)(7)

简介: Transformers 4.37 中文文档(四十一)

Transformers 4.37 中文文档(四十一)(6)https://developer.aliyun.com/article/1565237


LukeForSequenceClassification

class transformers.LukeForSequenceClassification

<来源>

( config )

参数

  • config(LukeConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

LUKE 模型变压器,顶部带有一个序列分类/回归头(在池化输出的顶部有一个线性层),例如用于 GLUE 任务。

这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None entity_ids: Optional = None entity_attention_mask: Optional = None entity_token_type_ids: Optional = None entity_position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.luke.modeling_luke.LukeSequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于未被“masked”掩盖的标记,将其设为 1,
  • 对于被masked掩盖的标记,将其设为 0。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]之间:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • entity_ids(形状为(batch_size, entity_length)torch.LongTensor)— 实体词汇中实体标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
  • entity_attention_mask(形状为(batch_size, entity_length)torch.FloatTensor可选)— 避免在填充实体标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于未被“masked”掩盖的实体标记,将其设为 1,
  • 对于被masked掩盖的实体标记,将其设为 0。
  • entity_token_type_ids (torch.LongTensor of shape (batch_size, entity_length), optional) — 段标记索引,用于指示实体标记输入的第一部分和第二部分。索引选在[0, 1]范围内:
  • 0 对应于部分 A实体标记,
  • 1 对应于部分 B实体标记。
  • entity_position_ids (torch.LongTensor of shape (batch_size, entity_length, max_mention_length), optional) — 每个输入实体在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选在[0, 1]范围内。
  • 1 表示头部未被masked
  • 0 表示头部是masked
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.models.luke.modeling_luke.LukeSequenceClassifierOutputtuple(torch.FloatTensor)

一个transformers.models.luke.modeling_luke.LukeSequenceClassifierOutput或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(LukeConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 分类(或回归,如果 config.num_labels==1)损失。
  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出加上每层的输出)。
    模型每层输出的隐藏状态加上可选的初始嵌入输出。
  • entity_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 形状为(batch_size, entity_length, hidden_size)torch.FloatTensor元组(嵌入输出的输出加上每层的输出)。模型每层输出的实体隐藏状态加上初始实体嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

LukeForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

单标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, LukeForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base")
>>> model = LukeForSequenceClassification.from_pretrained("studio-ousia/luke-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = LukeForSequenceClassification.from_pretrained("studio-ousia/luke-base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, LukeForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base")
>>> model = LukeForSequenceClassification.from_pretrained("studio-ousia/luke-base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = LukeForSequenceClassification.from_pretrained(
...     "studio-ousia/luke-base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

LukeForMultipleChoice

class transformers.LukeForMultipleChoice

<来源>

( config )

参数

  • config(LukeConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

LUKE 模型在顶部具有多选分类头(在池化输出的顶部和 softmax 上的线性层),例如用于 RocStories/SWAG 任务。

这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None entity_ids: Optional = None entity_attention_mask: Optional = None entity_token_type_ids: Optional = None entity_position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.luke.modeling_luke.LukeMultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 1 用于未被“掩码”的标记,
  • 0 用于被“掩码”的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)- 段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]之间:
  • 0 对应于“句子 A”标记,
  • 1 对应于“句子 B”标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • entity_ids(形状为(batch_size, entity_length)torch.LongTensor)- 实体词汇表中实体标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
  • entity_attention_mask(形状为(batch_size, entity_length)torch.FloatTensor可选) - 避免在填充实体标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
  • 1 表示未被masked的实体标记,
  • 对于被masked的实体标记为 0。
  • entity_token_type_ids(形状为(batch_size, entity_length)torch.LongTensor可选) - 指示实体标记输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:
  • 0 对应于部分 A实体标记,
  • 1 对应于部分 B实体标记。
  • entity_position_ids(形状为(batch_size, entity_length, max_mention_length)torch.LongTensor可选) - 每个输入实体在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)torch.FloatTensor可选) - 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选) - 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • output_attentionsbool可选) - 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选) - 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选) - 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选) - 用于计算多选分类损失的标签。索引应在[0, ..., num_choices-1]中,其中num_choices是输入张量的第二维的大小。(参见上面的input_ids

返回

transformers.models.luke.modeling_luke.LukeMultipleChoiceModelOutputtuple(torch.FloatTensor)

一个transformers.models.luke.modeling_luke.LukeMultipleChoiceModelOutput或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包括各种元素,取决于配置(LukeConfig)和输入。

  • loss(形状为*(1,)*的torch.FloatTensor可选,当提供labels时返回) - 分类损失。
  • logits(形状为(batch_size, num_choices)torch.FloatTensor) - num_choices是输入张量的第二维。(参见上面的input_ids)。
    SoftMax 之前的分类分数。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) - 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有一个嵌入层,+ 一个用于每个层的输出)。
    每层模型的隐藏状态加上可选的初始嵌入输出。
  • entity_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, entity_length, hidden_size)torch.FloatTensor 元组。模型在每一层输出的实体隐藏状态加上初始实体嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

LukeyForMultipleChoice 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, LukeForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base")
>>> model = LukeForMultipleChoice.from_pretrained("studio-ousia/luke-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits


Transformers 4.37 中文文档(四十一)(8)https://developer.aliyun.com/article/1565240

相关文章
|
6月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十一)(8)
Transformers 4.37 中文文档(四十一)
39 2
|
6月前
|
存储 自然语言处理 算法框架/工具
Transformers 4.37 中文文档(四十一)(4)
Transformers 4.37 中文文档(四十一)
204 3
|
6月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十二)(6)
Transformers 4.37 中文文档(四十二)
42 5
|
6月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(四十二)(5)
Transformers 4.37 中文文档(四十二)
47 4
|
6月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十一)(5)
Transformers 4.37 中文文档(四十一)
29 0
|
6月前
|
XML 测试技术 数据格式
Transformers 4.37 中文文档(四十二)(4)
Transformers 4.37 中文文档(四十二)
42 3
|
6月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(四十二)(3)
Transformers 4.37 中文文档(四十二)
35 2
|
6月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十八)(2)
Transformers 4.37 中文文档(四十八)
41 2
|
6月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十二)(2)
Transformers 4.37 中文文档(四十二)
79 1
|
6月前
|
自然语言处理 PyTorch 区块链
Transformers 4.37 中文文档(四十二)(1)
Transformers 4.37 中文文档(四十二)
100 1