Transformers 4.37 中文文档(三十)(4)

简介: Transformers 4.37 中文文档(三十)

Transformers 4.37 中文文档(三十)(3)https://developer.aliyun.com/article/1564674


ElectraForMaskedLM

class transformers.ElectraForMaskedLM

<来源>

( config )

参数

  • config(ElectraConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部有一个语言建模头的 Electra 模型。

尽管鉴别器和生成器都可以加载到此模型中,但生成器是这两个模型中唯一为掩码语言建模任务训练过的模型。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 1 表示未掩盖的标记,
  • 0 表示标记是掩盖的
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
  • 0 对应于一个句子 A的标记,
  • 1 对应于一个句子 B的标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选) — 每个输入序列标记的位置索引在位置嵌入中的索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]中:
  • 1 表示头部是未掩盖的
  • 0 表示头部是掩盖的
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这很有用,而不是使用模型的内部嵌入查找矩阵。
  • encoder_hidden_states (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则用于交叉注意力。
  • encoder_attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在[0, 1]之间:
  • 1 表示头部是not masked
  • 0 表示头部是masked
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]范围内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(masked),损失仅计算具有标签在[0, ..., config.vocab_size]范围内的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含各种元素,取决于配置(ElectraConfig)和输入。

  • 损失 (torch.FloatTensor,形状为(1,)可选,在提供labels时返回) — 掩码语言建模(MLM)损失。
  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出加上每一层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ElectraForMaskedLM 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ElectraForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-generator")
>>> model = ElectraForMaskedLM.from_pretrained("google/electra-small-generator")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
1.22

ElectraForSequenceClassification

class transformers.ElectraForSequenceClassification

<来源>

( config )

参数

  • config(ElectraConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

具有顶部序列分类/回归头部(在池化输出之上的线性层)的 ELECTRA 模型变换器,例如用于 GLUE 任务。

该模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列令牌的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充令牌索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
  • 1 对应于未被“掩码”(masked)的令牌,
  • 对于被“掩码”(masked)的令牌为 0。
  • 注意掩码是什么?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于“句子 A”令牌,
  • 1 对应于“句子 B”令牌。
  • 令牌类型 ID 是什么?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    位置 ID 是什么?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:
  • 1 表示头部未被“掩码”(masked),
  • 0 表示头部被“掩码”(masked)。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 编码器最后一层的隐藏状态序列的输出。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选在[0, 1]范围内。
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(ElectraConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类(如果config.num_labels==1则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)— 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入层的输出+每个层的输出)。
    模型在每一层的输出隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

ElectraForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, ElectraForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-emotion")
>>> model = ElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'joy'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.06

多标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, ElectraForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-emotion")
>>> model = ElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ElectraForSequenceClassification.from_pretrained(
...     "bhadresh-savani/electra-base-emotion", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

ElectraForMultipleChoice

class transformers.ElectraForMultipleChoice

<来源>

( config )

参数

  • config(ElectraConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

ELECTRA 模型,顶部带有多选分类头(顶部的线性层和 softmax,例如用于 RocStories/SWAG 任务)。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_idstorch.LongTensor,形状为(batch_size, num_choices, sequence_length))— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_masktorch.FloatTensor,形状为(batch_size, num_choices, sequence_length)可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
  • 1 表示未被 masked的标记,
  • 0 表示被 masked的标记。
  • 什么是注意力掩码?
  • token_type_idstorch.LongTensor,形状为(batch_size, num_choices, sequence_length)可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_idstorch.LongTensor,形状为(batch_size, num_choices, sequence_length)可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • head_masktorch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选)— 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]中选择:
  • 1 表示头部未被 masked
  • 0 表示头部被masked
  • inputs_embedstorch.FloatTensor,形状为(batch_size, num_choices, sequence_length, hidden_size)可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • encoder_hidden_statestorch.FloatTensor,形状为(batch_size, num_choices, sequence_length, hidden_size)可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为(batch_size, num_choices, sequence_length)optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。选择的掩码值在[0, 1]范围内。
  • 1 表示头部未被掩盖
  • 0 表示头部被掩盖
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]范围内,其中num_choices是输入张量第二维的大小。(请参阅上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.MultipleChoiceModelOutput 或torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False,或者根据配置(ElectraConfig)和输入的不同元素组成。

  • loss (torch.FloatTensor,形状为*(1,)*,optional,当提供labels时返回) — 分类损失。
  • logits (torch.FloatTensor,形状为(batch_size, num_choices)) — num_choices是输入张量的第二维。(请参阅上面的input_ids)。
    分类得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)optional,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个+每一层的输出的一个)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)optional,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ElectraForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ElectraForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
>>> model = ElectraForMultipleChoice.from_pretrained("google/electra-small-discriminator")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

ElectraForTokenClassification

class transformers.ElectraForTokenClassification

<来源>

( config )

参数

  • config (ElectraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

在顶部带有令牌分类头的 Electra 模型。

鉴别器和生成器都可以加载到此模型中。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充令牌索引上执行注意力的掩码。掩码值选在 [0, 1]
  • 1 表示未被 masked 的令牌,
  • 0 表示被 masked 的令牌。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引选在 [0, 1]
  • 0 对应 句子 A 令牌,
  • 1 对应 句子 B 令牌。
  • 什么是令牌类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列令牌在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选在 [0, 1]
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权来将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充令牌索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在 [0, 1]
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • output_attentions (booloptional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或者一个torch.FloatTensor元组(如果传入return_dict=False或者当config.return_dict=False时),包含根据配置(ElectraConfig)和输入不同元素。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 分类损失。
  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.num_labels)) — SoftMax 之前的分类分数。
  • hidden_states (tuple(torch.FloatTensor)optional,当传入output_hidden_states=True或者当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)optional,当传入output_attentions=True或者当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均。

ElectraForTokenClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ElectraForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-discriminator-finetuned-conll03-english")
>>> model = ElectraForTokenClassification.from_pretrained("bhadresh-savani/electra-base-discriminator-finetuned-conll03-english")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.11


Transformers 4.37 中文文档(三十)(5)https://developer.aliyun.com/article/1564676

相关文章
|
4月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(四十)(8)
Transformers 4.37 中文文档(四十)
26 2
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十)(7)
Transformers 4.37 中文文档(四十)
38 2
|
4月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(四十)(9)
Transformers 4.37 中文文档(四十)
29 2
|
4月前
|
机器学习/深度学习 存储 索引
Transformers 4.37 中文文档(四十)(3)
Transformers 4.37 中文文档(四十)
46 1
|
4月前
|
缓存 PyTorch API
Transformers 4.37 中文文档(四十)(2)
Transformers 4.37 中文文档(四十)
100 1
|
4月前
|
并行计算 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十)(6)
Transformers 4.37 中文文档(四十)
31 1
|
4月前
|
机器学习/深度学习 缓存 PyTorch
Transformers 4.37 中文文档(四十)(4)
Transformers 4.37 中文文档(四十)
41 1
|
4月前
|
缓存 PyTorch 算法框架/工具
Transformers 4.37 中文文档(四十)(1)
Transformers 4.37 中文文档(四十)
51 1
|
4月前
|
索引
Transformers 4.37 中文文档(四十)(5)
Transformers 4.37 中文文档(四十)
23 1
|
4月前
|
缓存 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十)(7)
Transformers 4.37 中文文档(三十)
19 0