Transformers 4.37 中文文档(三十)(3)https://developer.aliyun.com/article/1564674
ElectraForMaskedLM
class transformers.ElectraForMaskedLM
( config )
参数
config
(ElectraConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部有一个语言建模头的 Electra 模型。
尽管鉴别器和生成器都可以加载到此模型中,但生成器是这两个模型中唯一为掩码语言建模任务训练过的模型。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示
未掩盖
的标记, - 0 表示标记是
掩盖的
。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:
- 0 对应于一个句子 A的标记,
- 1 对应于一个句子 B的标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记的位置索引在位置嵌入中的索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
中:
- 1 表示头部是
未掩盖的
, - 0 表示头部是
掩盖的
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这很有用,而不是使用模型的内部嵌入查找矩阵。encoder_hidden_states
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则用于交叉注意力。encoder_attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在[0, 1]
之间:
- 1 表示头部是
not masked
, - 0 表示头部是
masked
。
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(masked),损失仅计算具有标签在[0, ..., config.vocab_size]
范围内的标记。
返回
transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或当config.return_dict=False
时)包含各种元素,取决于配置(ElectraConfig)和输入。
损失
(torch.FloatTensor
,形状为(1,)
,可选,在提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出加上每一层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ElectraForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ElectraForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-generator") >>> model = ElectraForMaskedLM.from_pretrained("google/electra-small-generator") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) 'paris' >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) 1.22
ElectraForSequenceClassification
class transformers.ElectraForSequenceClassification
( config )
参数
config
(ElectraConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
具有顶部序列分类/回归头部(在池化输出之上的线性层)的 ELECTRA 模型变换器,例如用于 GLUE 任务。
该模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
该模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列令牌的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充令牌索引上执行注意力的掩码。选择的掩码值在[0, 1]
中:
- 1 对应于未被“掩码”(masked)的令牌,
- 对于被“掩码”(masked)的令牌为 0。
- 注意掩码是什么?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于“句子 A”令牌,
- 1 对应于“句子 B”令牌。
- 令牌类型 ID 是什么?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
位置 ID 是什么?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]
中:
- 1 表示头部未被“掩码”(masked),
- 0 表示头部被“掩码”(masked)。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。encoder_hidden_states
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 编码器最后一层的隐藏状态序列的输出。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选在[0, 1]
范围内。
- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size,)
的torch.LongTensor
,可选)— 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含各种元素,取决于配置(ElectraConfig)和输入。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 分类(如果config.num_labels==1
则为回归)损失。logits
(形状为(batch_size, config.num_labels)
的torch.FloatTensor
)— 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入层的输出+每个层的输出)。
模型在每一层的输出隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每个层一个)。
在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
ElectraForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类的示例:
>>> import torch >>> from transformers import AutoTokenizer, ElectraForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-emotion") >>> model = ElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'joy' >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = ElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) 0.06
多标签分类的示例:
>>> import torch >>> from transformers import AutoTokenizer, ElectraForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-emotion") >>> model = ElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = ElectraForSequenceClassification.from_pretrained( ... "bhadresh-savani/electra-base-emotion", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.sum( ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 ... ).to(torch.float) >>> loss = model(**inputs, labels=labels).loss
ElectraForMultipleChoice
class transformers.ElectraForMultipleChoice
( config )
参数
config
(ElectraConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
ELECTRA 模型,顶部带有多选分类头(顶部的线性层和 softmax,例如用于 RocStories/SWAG 任务)。
这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 1 表示
未被 masked
的标记, - 0 表示
被 masked
的标记。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选)— 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部
未被 masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。encoder_hidden_states
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
,optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。选择的掩码值在[0, 1]
范围内。
- 1 表示头部
未被掩盖
, - 0 表示头部
被掩盖
。
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
,形状为(batch_size,)
,optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(请参阅上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.MultipleChoiceModelOutput 或torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
,或者根据配置(ElectraConfig)和输入的不同元素组成。
loss
(torch.FloatTensor
,形状为*(1,)*,optional,当提供labels
时返回) — 分类损失。logits
(torch.FloatTensor
,形状为(batch_size, num_choices)
) — num_choices是输入张量的第二维。(请参阅上面的input_ids)。
分类得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,optional,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个+每一层的输出的一个)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,optional,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ElectraForMultipleChoice 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ElectraForMultipleChoice >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") >>> model = ElectraForMultipleChoice.from_pretrained("google/electra-small-discriminator") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
ElectraForTokenClassification
class transformers.ElectraForTokenClassification
( config )
参数
config
(ElectraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
在顶部带有令牌分类头的 Electra 模型。
鉴别器和生成器都可以加载到此模型中。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列令牌的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充令牌索引上执行注意力的掩码。掩码值选在[0, 1]
:
- 1 表示未被
masked
的令牌, - 0 表示被
masked
的令牌。
- 什么是注意力掩码?
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]
:
- 0 对应 句子 A 令牌,
- 1 对应 句子 B 令牌。
- 什么是令牌类型 ID?
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]
:
- 1 表示头部未被
masked
, - 0 表示头部被
masked
。
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。encoder_hidden_states
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充令牌索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在[0, 1]
:
- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
output_attentions
(bool
,optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
内。
返回
transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或者一个torch.FloatTensor
元组(如果传入return_dict=False
或者当config.return_dict=False
时),包含根据配置(ElectraConfig)和输入不同元素。
loss
(torch.FloatTensor
,形状为(1,)
,optional,当提供labels
时返回) — 分类损失。logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — SoftMax 之前的分类分数。hidden_states
(tuple(torch.FloatTensor)
,optional,当传入output_hidden_states=True
或者当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,optional,当传入output_attentions=True
或者当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均。
ElectraForTokenClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ElectraForTokenClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-discriminator-finetuned-conll03-english") >>> model = ElectraForTokenClassification.from_pretrained("bhadresh-savani/electra-base-discriminator-finetuned-conll03-english") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" ... ) >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_token_class_ids = logits.argmax(-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] >>> predicted_tokens_classes ['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC'] >>> labels = predicted_token_class_ids >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) 0.11
Transformers 4.37 中文文档(三十)(5)https://developer.aliyun.com/article/1564676