Transformers 4.37 中文文档(三)(4)

简介: Transformers 4.37 中文文档(三)

Transformers 4.37 中文文档(三)(3)https://developer.aliyun.com/article/1564650


训练

Pytorch 隐藏 Pytorch 内容

如果您不熟悉如何使用 Trainer 微调模型,请查看这里的基本教程!

现在您已经准备好开始训练您的模型了!使用 AutoModelForSeq2SeqLM 加载 T5:

>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

此时,只剩下三个步骤:

  1. 在 Seq2SeqTrainingArguments 中定义您的训练超参数。唯一必需的参数是output_dir,指定保存模型的位置。通过设置push_to_hub=True将此模型推送到 Hub(您需要登录 Hugging Face 才能上传模型)。在每个 epoch 结束时,Trainer 将评估 SacreBLEU 指标并保存训练检查点。
  2. 将训练参数传递给 Seq2SeqTrainer,同时还包括模型、数据集、分词器、数据整理器和compute_metrics函数。
  3. 调用 train()来微调您的模型。
>>> training_args = Seq2SeqTrainingArguments(
...     output_dir="my_awesome_opus_books_model",
...     evaluation_strategy="epoch",
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
...     num_train_epochs=2,
...     predict_with_generate=True,
...     fp16=True,
...     push_to_hub=True,
... )
>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_books["train"],
...     eval_dataset=tokenized_books["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
...     compute_metrics=compute_metrics,
... )
>>> trainer.train()

训练完成后,使用 push_to_hub()方法将模型共享到 Hub,以便每个人都可以使用您的模型:

>>> trainer.push_to_hub()

TensorFlow 隐藏 TensorFlow 内容

如果您不熟悉如何使用 Keras 微调模型,请查看这里的基本教程!

要在 TensorFlow 中微调模型,请首先设置优化器函数、学习率调度和一些训练超参数:

>>> from transformers import AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)

然后您可以使用 TFAutoModelForSeq2SeqLM 加载 T5:

>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)

使用 prepare_tf_dataset()将数据集转换为tf.data.Dataset格式:

>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_books["train"],
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_books["test"],
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )

使用compile配置模型进行训练。请注意,Transformers 模型都有一个默认的与任务相关的损失函数,因此除非您想要指定一个,否则不需要:

>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)  # No loss argument!

在开始训练之前,还有最后两件事要设置:从预测中计算 SacreBLEU 指标,并提供一种将模型推送到 Hub 的方法。这两个都可以通过使用 Keras 回调来完成。

将您的compute_metrics函数传递给 KerasMetricCallback:

>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)

指定将模型和分词器推送到 PushToHubCallback 的位置:

>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_opus_books_model",
...     tokenizer=tokenizer,
... )

然后将您的回调捆绑在一起:

>>> callbacks = [metric_callback, push_to_hub_callback]

最后,你已经准备好开始训练你的模型了!调用fit与你的训练和验证数据集,时代的数量,以及你的回调来微调模型:

>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)

一旦训练完成,你的模型会自动上传到 Hub,这样每个人都可以使用它!

有关如何为翻译微调模型的更深入示例,请查看相应的PyTorch 笔记本TensorFlow 笔记本

推理

很好,现在你已经微调了一个模型,你可以用它进行推理!

想出一些你想要翻译成另一种语言的文本。对于 T5,你需要根据你正在处理的任务来添加前缀。对于从英语翻译成法语,你应该像下面所示添加前缀:

>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."

尝试使用微调模型进行推理的最简单方法是在 pipeline()中使用它。为翻译实例化一个pipeline与您的模型,并将文本传递给它:

>>> from transformers import pipeline
>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}]

如果你愿意,你也可以手动复制pipeline的结果:

Pytorch 隐藏 Pytorch 内容

对文本进行标记化,并将input_ids返回为 PyTorch 张量:

>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids

使用 generate()方法创建翻译。有关不同文本生成策略和控制生成的参数的更多详细信息,请查看 Text Generation API。

>>> from transformers import AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)

将生成的标记 ID 解码回文本:

>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lignées partagent des ressources avec des bactéries enfixant l'azote.'

TensorFlow 隐藏 TensorFlow 内容

对文本进行标记化,并将input_ids返回为 TensorFlow 张量:

>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids

使用 generate()方法创建翻译。有关不同文本生成策略和控制生成的参数的更多详细信息,请查看 Text Generation API。

>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)

将生成的标记 ID 解码回文本:

>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.'

摘要

原始文本:huggingface.co/docs/transformers/v4.37.2/en/tasks/summarization

www.youtube-nocookie.com/embed/yHnr5Dk2zCI

摘要创建文档或文章的简短版本,捕捉所有重要信息。除了翻译之外,这是另一个可以被制定为序列到序列任务的任务的例子。摘要可以是:

  • 抽取式:从文档中提取最相关的信息。
  • 生成式:生成捕捉最相关信息的新文本。

本指南将向您展示如何:

  1. BillSum数据集的加利福尼亚州议案子集上对T5进行微调,用于生成摘要。
  2. 使用您微调的模型进行推断。

本教程中展示的任务由以下模型架构支持:

BART, BigBird-Pegasus, Blenderbot, BlenderbotSmall, Encoder decoder,  FairSeq Machine-Translation, GPTSAN-japanese, LED, LongT5, M2M100,  Marian, mBART, MT5, MVP, NLLB, NLLB-MOE, Pegasus, PEGASUS-X, PLBart,  ProphetNet, SeamlessM4T, SeamlessM4Tv2, SwitchTransformers, T5, UMT5,  XLM-ProphetNet

在开始之前,请确保您已安装所有必要的库:

pip install transformers datasets evaluate rouge_score

我们鼓励您登录到您的 Hugging Face 账户,这样您就可以上传和分享您的模型给社区。在提示时,输入您的令牌以登录:

>>> from huggingface_hub import notebook_login
>>> notebook_login()

加载 BillSum 数据集

首先加载🤗数据集库中较小的加利福尼亚州议案子集:

>>> from datasets import load_dataset
>>> billsum = load_dataset("billsum", split="ca_test")

将数据集分割成训练集和测试集,使用train_test_split方法:

>>> billsum = billsum.train_test_split(test_size=0.2)

然后看一个例子:

>>> billsum["train"][0]
{'summary': 'Existing law authorizes state agencies to enter into contracts for the acquisition of goods or services upon approval by the Department of General Services. Existing law sets forth various requirements and prohibitions for those contracts, including, but not limited to, a prohibition on entering into contracts for the acquisition of goods or services of $100,000 or more with a contractor that discriminates between spouses and domestic partners or same-sex and different-sex couples in the provision of benefits. Existing law provides that a contract entered into in violation of those requirements and prohibitions is void and authorizes the state or any person acting on behalf of the state to bring a civil action seeking a determination that a contract is in violation and therefore void. Under existing law, a willful violation of those requirements and prohibitions is a misdemeanor.\nThis bill would also prohibit a state agency from entering into contracts for the acquisition of goods or services of $100,000 or more with a contractor that discriminates between employees on the basis of gender identity in the provision of benefits, as specified. By expanding the scope of a crime, this bill would impose a state-mandated local program.\nThe California Constitution requires the state to reimburse local agencies and school districts for certain costs mandated by the state. Statutory provisions establish procedures for making that reimbursement.\nThis bill would provide that no reimbursement is required by this act for a specified reason.',
 'text': 'The people of the State of California do enact as follows:\n\n\nSECTION 1.\nSection 10295.35 is added to the Public Contract Code, to read:\n10295.35.\n(a) (1) Notwithstanding any other law, a state agency shall not enter into any contract for the acquisition of goods or services in the amount of one hundred thousand dollars ($100,000) or more with a contractor that, in the provision of benefits, discriminates between employees on the basis of an employee’s or dependent’s actual or perceived gender identity, including, but not limited to, the employee’s or dependent’s identification as transgender.\n(2) For purposes of this section, “contract” includes contracts with a cumulative amount of one hundred thousand dollars ($100,000) or more per contractor in each fiscal year.\n(3) For purposes of this section, an employee health plan is discriminatory if the plan is not consistent with Section 1365.5 of the Health and Safety Code and Section 10140 of the Insurance Code.\n(4) The requirements of this section shall apply only to those portions of a contractor’s operations that occur under any of the following conditions:\n(A) Within the state.\n(B) On real property outside the state if the property is owned by the state or if the state has a right to occupy the property, and if the contractor’s presence at that location is connected to a contract with the state.\n(C) Elsewhere in the United States where work related to a state contract is being performed.\n(b) Contractors shall treat as confidential, to the maximum extent allowed by law or by the requirement of the contractor’s insurance provider, any request by an employee or applicant for employment benefits or any documentation of eligibility for benefits submitted by an employee or applicant for employment.\n(c) After taking all reasonable measures to find a contractor that complies with this section, as determined by the state agency, the requirements of this section may be waived under any of the following circumstances:\n(1) There is only one prospective contractor willing to enter into a specific contract with the state agency.\n(2) The contract is necessary to respond to an emergency, as determined by the state agency, that endangers the public health, welfare, or safety, or the contract is necessary for the provision of essential services, and no entity that complies with the requirements of this section capable of responding to the emergency is immediately available.\n(3) The requirements of this section violate, or are inconsistent with, the terms or conditions of a grant, subvention, or agreement, if the agency has made a good faith attempt to change the terms or conditions of any grant, subvention, or agreement to authorize application of this section.\n(4) The contractor is providing wholesale or bulk water, power, or natural gas, the conveyance or transmission of the same, or ancillary services, as required for ensuring reliable services in accordance with good utility practice, if the purchase of the same cannot practically be accomplished through the standard competitive bidding procedures and the contractor is not providing direct retail services to end users.\n(d) (1) A contractor shall not be deemed to discriminate in the provision of benefits if the contractor, in providing the benefits, pays the actual costs incurred in obtaining the benefit.\n(2) If a contractor is unable to provide a certain benefit, despite taking reasonable measures to do so, the contractor shall not be deemed to discriminate in the provision of benefits.\n(e) (1) Every contract subject to this chapter shall contain a statement by which the contractor certifies that the contractor is in compliance with this section.\n(2) The department or other contracting agency shall enforce this section pursuant to its existing enforcement powers.\n(3) (A) If a contractor falsely certifies that it is in compliance with this section, the contract with that contractor shall be subject to Article 9 (commencing with Section 10420), unless, within a time period specified by the department or other contracting agency, the contractor provides to the department or agency proof that it has complied, or is in the process of complying, with this section.\n(B) The application of the remedies or penalties contained in Article 9 (commencing with Section 10420) to a contract subject to this chapter shall not preclude the application of any existing remedies otherwise available to the department or other contracting agency under its existing enforcement powers.\n(f) Nothing in this section is intended to regulate the contracting practices of any local jurisdiction.\n(g) This section shall be construed so as not to conflict with applicable federal laws, rules, or regulations. In the event that a court or agency of competent jurisdiction holds that federal law, rule, or regulation invalidates any clause, sentence, paragraph, or section of this code or the application thereof to any person or circumstances, it is the intent of the state that the court or agency sever that clause, sentence, paragraph, or section so that the remainder of this section shall remain in effect.\nSEC. 2.\nSection 10295.35 of the Public Contract Code shall not be construed to create any new enforcement authority or responsibility in the Department of General Services or any other contracting agency.\nSEC. 3.\nNo reimbursement is required by this act pursuant to Section 6 of Article XIII\u2009B of the California Constitution because the only costs that may be incurred by a local agency or school district will be incurred because this act creates a new crime or infraction, eliminates a crime or infraction, or changes the penalty for a crime or infraction, within the meaning of Section 17556 of the Government Code, or changes the definition of a crime within the meaning of Section 6 of Article XIII\u2009B of the California Constitution.',
 'title': 'An act to add Section 10295.35 to the Public Contract Code, relating to public contracts.'}

有两个字段您将要使用:

  • text:将成为模型输入的议案文本。
  • summarytext的简化版本,将成为模型的目标。

预处理

下一步是加载 T5 分词器来处理textsummary

>>> from transformers import AutoTokenizer
>>> checkpoint = "t5-small"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)

您要创建的预处理函数需要:

  1. 在输入前加上提示,以便 T5 知道这是一个摘要任务。一些能够执行多个 NLP 任务的模型需要为特定任务提供提示。
  2. 在标记标签时使用关键字text_target参数。
  3. 截断序列,使其不超过由max_length参数设置的最大长度。
>>> prefix = "summarize: "
>>> def preprocess_function(examples):
...     inputs = [prefix + doc for doc in examples["text"]]
...     model_inputs = tokenizer(inputs, max_length=1024, truncation=True)
...     labels = tokenizer(text_target=examples["summary"], max_length=128, truncation=True)
...     model_inputs["labels"] = labels["input_ids"]
...     return model_inputs

要在整个数据集上应用预处理函数,使用🤗数据集的map方法。通过设置batched=True来加速map函数,以一次处理数据集的多个元素:

>>> tokenized_billsum = billsum.map(preprocess_function, batched=True)

现在使用 DataCollatorForSeq2Seq 创建一批示例。在整理过程中,将句子动态填充到批次中的最长长度,而不是将整个数据集填充到最大长度。

Pytorch 隐藏 Pytorch 内容

>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)

TensorFlow 隐藏 TensorFlow 内容

>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")

评估

在训练过程中包含一个指标通常有助于评估模型的性能。您可以使用🤗 Evaluate库快速加载一个评估方法。对于这个任务,加载ROUGE指标(查看🤗 Evaluate 快速入门以了解如何加载和计算指标):

>>> import evaluate
>>> rouge = evaluate.load("rouge")

然后创建一个函数,将您的预测和标签传递给compute以计算 ROUGE 指标:

>>> import numpy as np
>>> def compute_metrics(eval_pred):
...     predictions, labels = eval_pred
...     decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
...     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
...     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
...     result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
...     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
...     result["gen_len"] = np.mean(prediction_lens)
...     return {k: round(v, 4) for k, v in result.items()}

您的compute_metrics函数现在已经准备就绪,当您设置训练时会返回到它。

训练

Pytorch 隐藏 Pytorch 内容

如果您不熟悉使用 Trainer 微调模型,请查看基本教程这里!

现在您已经准备好开始训练您的模型了!使用 AutoModelForSeq2SeqLM 加载 T5:

>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

此时,只剩下三个步骤:

  1. 在 Seq2SeqTrainingArguments 中定义您的训练超参数。唯一必需的参数是output_dir,它指定了保存模型的位置。您可以通过设置push_to_hub=True将此模型推送到 Hub(您需要登录 Hugging Face 才能上传模型)。在每个 epoch 结束时,Trainer 将评估 ROUGE 指标并保存训练检查点。
  2. 将训练参数传递给 Seq2SeqTrainer,同时还要传递模型、数据集、分词器、数据整理器和compute_metrics函数。
  3. 调用 train()来微调您的模型。
>>> training_args = Seq2SeqTrainingArguments(
...     output_dir="my_awesome_billsum_model",
...     evaluation_strategy="epoch",
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
...     num_train_epochs=4,
...     predict_with_generate=True,
...     fp16=True,
...     push_to_hub=True,
... )
>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_billsum["train"],
...     eval_dataset=tokenized_billsum["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
...     compute_metrics=compute_metrics,
... )
>>> trainer.train()

训练完成后,使用 push_to_hub()方法将您的模型共享到 Hub,以便每个人都可以使用您的模型:

>>> trainer.push_to_hub()

TensorFlow 隐藏 TensorFlow 内容

如果您不熟悉使用 Keras 微调模型,请查看基本教程这里!

要微调 TensorFlow 模型,首先设置一个优化器函数、学习率调度和一些训练超参数:

>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)

然后您可以使用 TFAutoModelForSeq2SeqLM 加载 T5:

>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)

使用 prepare_tf_dataset()将您的数据集转换为tf.data.Dataset格式:

>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_billsum["train"],
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_billsum["test"],
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )

使用compile为训练配置模型。请注意,Transformers 模型都有一个默认的与任务相关的损失函数,因此除非您想要指定一个,否则不需要:

>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)  # No loss argument!

在开始训练之前,还有最后两件事要设置:从预测中计算 ROUGE 分数,并提供一种将模型推送到 Hub 的方法。这两个都可以通过使用 Keras 回调来完成。

将您的compute_metrics函数传递给 KerasMetricCallback:

>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)

在 PushToHubCallback 中指定要推送模型和分词器的位置:

>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_billsum_model",
...     tokenizer=tokenizer,
... )

然后将您的回调捆绑在一起:

>>> callbacks = [metric_callback, push_to_hub_callback]

最后,您已经准备好开始训练您的模型了!使用您的训练和验证数据集、epoch 数量和回调函数调用fit来微调模型:

>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)

训练完成后,您的模型将自动上传到 Hub,以便每个人都可以使用它!

有关如何为摘要微调模型的更深入示例,请查看相应的 PyTorch 笔记本TensorFlow 笔记本

推理

很好,现在您已经对模型进行了微调,可以用于推理了!

想出一些您想要总结的文本。对于 T5,您需要根据您正在处理的任务为输入添加前缀。对于摘要,您应该像下面所示为输入添加前缀:

>>> text = "summarize: The Inflation Reduction Act lowers prescription drug costs, health care costs, and energy costs. It's the most aggressive action on tackling the climate crisis in American history, which will lift up American workers and create good-paying, union jobs across the country. It'll lower the deficit and ask the ultra-wealthy and corporations to pay their fair share. And no one making under $400,000 per year will pay a penny more in taxes."

尝试使用微调后的模型进行推理的最简单方法是在 pipeline() 中使用它。为摘要实例化一个带有您的模型的 pipeline,并将文本传递给它:

>>> from transformers import pipeline
>>> summarizer = pipeline("summarization", model="stevhliu/my_awesome_billsum_model")
>>> summarizer(text)
[{"summary_text": "The Inflation Reduction Act lowers prescription drug costs, health care costs, and energy costs. It's the most aggressive action on tackling the climate crisis in American history, which will lift up American workers and create good-paying, union jobs across the country."}]

如果愿意,您也可以手动复制 pipeline 的结果:

Pytorch 隐藏 Pytorch 内容

对文本进行标记化,并将 input_ids 返回为 PyTorch 张量:

>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_billsum_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids

使用 generate() 方法来创建摘要。有关不同文本生成策略和控制生成的参数的更多详细信息,请查看 Text Generation API。

>>> from transformers import AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("stevhliu/my_awesome_billsum_model")
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)

将生成的标记 id 解码回文本:

>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'

TensorFlow 隐藏 TensorFlow 内容

对文本进行标记化,并将 input_ids 返回为 TensorFlow 张量:

>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_billsum_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids

使用 generate() 方法来创建摘要。有关不同文本生成策略和控制生成的参数的更多详细信息,请查看 Text Generation API。

>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("stevhliu/my_awesome_billsum_model")
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)

将生成的标记 id 解码回文本:

>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'


Transformers 4.37 中文文档(三)(5)https://developer.aliyun.com/article/1564652

相关文章
|
6月前
|
数据可视化 PyTorch 测试技术
Transformers 4.37 中文文档(五)(6)
Transformers 4.37 中文文档(五)
79 2
|
6月前
|
存储 缓存 Shell
Transformers 4.37 中文文档(一)(3)
Transformers 4.37 中文文档(一)
423 1
Transformers 4.37 中文文档(一)(3)
|
6月前
|
存储 编解码 JSON
Transformers 4.37 中文文档(四)(5)
Transformers 4.37 中文文档(四)
53 1
Transformers 4.37 中文文档(四)(5)
|
6月前
|
PyTorch TensorFlow 调度
Transformers 4.37 中文文档(一)(5)
Transformers 4.37 中文文档(一)
79 1
|
6月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(一百)(4)
Transformers 4.37 中文文档(一百)
52 1
|
6月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(一百)(5)
Transformers 4.37 中文文档(一百)
40 1
|
6月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(一百)(6)
Transformers 4.37 中文文档(一百)
40 1
|
6月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(八十三)(2)
Transformers 4.37 中文文档(八十三)
44 3
|
6月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(二)(4)
Transformers 4.37 中文文档(二)
47 2
|
6月前
|
存储 编解码 PyTorch
Transformers 4.37 中文文档(八十三)(3)
Transformers 4.37 中文文档(八十三)
32 2

热门文章

最新文章