Transformers 4.37 中文文档(二十九)(5)

简介: Transformers 4.37 中文文档(二十九)

Transformers 4.37 中文文档(二十九)(4)https://developer.aliyun.com/article/1563619


TFDistilBertForTokenClassification

class transformers.TFDistilBertForTokenClassification

<来源>

( config *inputs **kwargs )

参数

  • config (DistilBertConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

DistilBert 模型在顶部有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]中的掩码值:
  • 1 表示未被遮罩的标记,
  • 0 表示被遮罩的标记。
  • 什么是注意力掩码?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块的选定头部失效的掩码。选择在[0, 1]中的掩码值:
  • 1 表示头部未被遮罩,
  • 0 表示头部被遮罩。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式中该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels(形状为(batch_size, sequence_length)tf.Tensor可选)— 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]中。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(DistilBertConfig)和输入。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, sequence_length, config.num_labels)tf.Tensor)— 分类分数(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    每层输出的模型的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFDistilBertForTokenClassification 的前向方法覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFDistilBertForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = TFDistilBertForTokenClassification.from_pretrained("distilbert-base-uncased")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFDistilBertForQuestionAnswering

class transformers.TFDistilBertForQuestionAnswering

<来源>

( config *inputs **kwargs )

参数

  • config(DistilBertConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

DistilBert 模型在顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出顶部的线性层上计算span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)Numpy arraytf.Tensor)- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)Numpy数组或tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]范围内:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)Numpy数组或tf.Tensor可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值选定在[0, 1]范围内:
  • 1 表示头部未被掩码
  • 0 表示头部被掩码
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式中该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • start_positions(形状为(batch_size,)tf.Tensor可选)— 用于计算标记分类损失的标记跨度开始位置的位置(索引)。位置被夹紧到序列的长度(sequence_length)。超出序列范围的位置不会被考虑在内以计算损失。
  • end_positions(形状为(batch_size,)tf.Tensor可选)— 用于计算标记跨度结束位置的位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。超出序列范围的位置不会被考虑在内以计算损失。

返回值

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或tuple(tf.Tensor)

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或tuple(tf.Tensor),根据配置(DistilBertConfig)和输入包含各种元素。

  • loss(形状为(batch_size,)tf.Tensor可选,当提供start_positionsend_positions时返回)— 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits(形状为(batch_size, sequence_length)tf.Tensor)— 跨度开始得分(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)tf.Tensor)— 跨度结束得分(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

TFDistilBertForQuestionAnswering 的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFDistilBertForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)

JAX 隐藏 JAX 内容

FlaxDistilBertModel

class transformers.FlaxDistilBertModel

<来源>

( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(DistilBertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 DistilBert 模型变压器输出原始隐藏状态,没有特定的头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 代表未被masked的标记,
  • 0 代表被masked的标记。
  • 什么是注意力掩码?
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput,而不是一个普通的元组。

FlaxDistilBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertModel
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

FlaxDistilBertForMaskedLM

class transformers.FlaxDistilBertForMaskedLM

< source >

( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (DistilBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有language modeling头的 DistilBert 模型。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持内在的 JAX 特性,例如:

__call__

< source >

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 代表未被masked的标记,
  • 0 代表被masked的标记。
  • 什么是注意力掩码?
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括根据配置(DistilBertConfig)和输入的不同元素。

  • logits(形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)- 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)- 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每个层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxDistilBertPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertForMaskedLM.from_pretrained("distilbert-base-uncased")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxDistilBertForSequenceClassification

class transformers.FlaxDistilBertForSequenceClassification

< source >

( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(DistilBertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

DistilBert 模型变压器,顶部带有序列分类/回归头(池化输出之上的线性层),例如用于 GLUE 任务。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持内在的 JAX 特性,例如:

__call__

< source >

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 对于未被掩盖的标记为 1,
  • 对于被掩盖的标记为 0。
  • 什么是注意力掩码?
  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个包含各种元素的torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)取决于配置(DistilBertConfig)和输入。

  • logits(形状为(batch_size, config.num_labels)jnp.ndarray) — 分类(如果config.num_labels==1则为回归)分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每个层一个)。
    自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxDistilBertPreTrainedModel的前向方法覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxDistilBertForMultipleChoice

class transformers.FlaxDistilBertForMultipleChoice

< source >

( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (DistilBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

DistilBert 模型,顶部带有一个多选分类头(池化输出顶部的线性层和 softmax),例如 RocStories/SWAG 任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

< source >

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 代表未被掩码的标记,
  • 0 代表被掩码的标记。
  • 什么是注意力掩码?
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(DistilBertConfig)和输入的各种元素。

  • logits(形状为(batch_size, num_choices)jnp.ndarray) — num_choices是输入张量的第二维度。(参见上面的input_ids)。
    分类得分(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxDistilBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertForMultipleChoice.from_pretrained("distilbert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits

FlaxDistilBertForTokenClassification

class transformers.FlaxDistilBertForTokenClassification

<来源>

( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(DistilBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

DistilBert 模型在顶部带有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 代表未被掩盖的标记,
  • 0 代表被掩盖的标记。
  • 什么是注意力掩码?
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(DistilBertConfig)和输入。

  • logits (jnp.ndarray,形状为(batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxDistilBertPreTrainedModel的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertForTokenClassification.from_pretrained("distilbert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxDistilBertForQuestionAnswering

class transformers.FlaxDistilBertForQuestionAnswering

<来源>

( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (DistilBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

DistilBert 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的顶部有线性层,用于计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间。
  • 对于未被掩码的标记为 1,
  • 对于被掩码的标记为 0。
  • 什么是注意力掩码?
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(DistilBertConfig)和输入。

  • start_logits (jnp.ndarray,形状为(batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。
  • end_logits (jnp.ndarray,形状为(batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxDistilBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

e-uncased")

model = FlaxDistilBertForTokenClassification.from_pretrained(“distilbert-base-uncased”)

inputs = tokenizer(“Hello, my dog is cute”, return_tensors=“jax”)

outputs = model(**inputs)

logits = outputs.logits

## FlaxDistilBertForQuestionAnswering
### `class transformers.FlaxDistilBertForQuestionAnswering`
[<来源>](https://github.com/huggingface/transformers/blob/v4.37.2/src/transformers/models/distilbert/modeling_flax_distilbert.py#L879)
```py
( config: DistilBertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (DistilBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

DistilBert 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的顶部有线性层,用于计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None head_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间。
  • 对于未被掩码的标记为 1,
  • 对于被掩码的标记为 0。
  • 什么是注意力掩码?
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(DistilBertConfig)和输入。

  • start_logits (jnp.ndarray,形状为(batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。
  • end_logits (jnp.ndarray,形状为(batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxDistilBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxDistilBertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> model = FlaxDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
相关文章
|
3月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十七)(2)
Transformers 4.37 中文文档(二十七)
83 0
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十九)(4)
Transformers 4.37 中文文档(二十九)
38 12
|
3月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(二十九)(2)
Transformers 4.37 中文文档(二十九)
28 5
|
3月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(二十八)(5)
Transformers 4.37 中文文档(二十八)
28 5
|
3月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(二十八)(4)
Transformers 4.37 中文文档(二十八)
26 4
|
3月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十九)(1)
Transformers 4.37 中文文档(二十九)
38 3
|
3月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(3)
Transformers 4.37 中文文档(二十九)
38 2
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十八)(2)
Transformers 4.37 中文文档(二十八)
30 2
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十八)(3)
Transformers 4.37 中文文档(二十八)
38 1
|
3月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(三十一)(2)
Transformers 4.37 中文文档(三十一)
30 0