Transformers 4.37 中文文档(八十一)(4)

简介: Transformers 4.37 中文文档(八十一)

Transformers 4.37 中文文档(八十一)(3)https://developer.aliyun.com/article/1563271


WhisperForCausalLM

class transformers.WhisperForCausalLM

<来源>

( config )

参数

  • config(WhisperConfig)-模型配置类,具有模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Whisper 解码器,顶部带有语言建模头(线性层,其权重与输入嵌入绑定)。

这个模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None encoder_outputs: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。什么是输入 ID?
  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1] 中:
  • 1 表示标记是 not masked
  • 0 表示标记是 masked。什么是注意力掩码?
  • encoder_outputs (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于使注意力模块中选择的头部失效的掩码。掩码值选在 [0, 1] 中:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于使交叉注意力模块中选择的头部失效的掩码。掩码值选在 [0, 1] 中:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 的元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。当模型用作序列到序列模型中的解码器时,只有这两个额外的张量是必需的。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。如果使用了 past_key_values,用户可以选择只输入最后一个形状为 (batch_size, 1)decoder_input_ids(这些没有将其过去的键值状态提供给该模型的标记)而不是所有形状为 (batch_size, sequence_length)decoder_input_ids
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应该在 [0, ..., config.vocab_size] 或 -100(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅计算具有标签在 [0, ..., config.vocab_size] 中的标记。
  • use_cache (bool, optional) — 如果设置为 True,则会返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • 1 表示标记是 not masked
  • 0 表示标记是 masked
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通的元组。

返回值

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(WhisperConfig)和输入的各种元素。

  • 损失 (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 语言建模损失(用于下一个标记预测)。
  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。
    模型在每个层的输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    注意力 softmax 后的自注意力头中的注意力权重,用于计算加权平均值。
  • cross_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。
    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。

示例:

>>> from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor
>>> import torch
>>> from datasets import load_dataset
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
>>> assistant_model = WhisperForCausalLM.from_pretrained("distil-whisper/distil-large-v2")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> sample = ds[0]["audio"]
>>> input_features = processor(
...     sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
... ).input_features
>>> predicted_ids = model.generate(input_features, assistant_model=assistant_model)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
>>> transcription
' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'

WhisperForAudioClassification

class transformers.WhisperForAudioClassification

<来源>

( config )

参数

  • input_features (torch.FloatTensor,形状为(batch_size, feature_size, sequence_length)) — 从原始语音波形中提取的浮点值 mel 特征。原始语音波形可以通过将.flac.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得,例如通过 soundfile 库(pip install soundfile)。要将数组准备成input_features,应使用 AutoFeatureExtractor 来提取 mel 特征,填充并转换为torch.FloatTensor类型的张量。请参见call()
  • head_mask (torch.Tensor,形状为(encoder_layers, encoder_attention_heads)optional) — 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — 元组包括(last_hidden_stateoptional: hidden_statesoptional: attentions) last_hidden_state的形状为(batch_size, sequence_length, hidden_size)optional)是编码器最后一层输出的隐藏状态序列。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

带有顶部序列分类头部(在汇聚输出上的线性层)的 Whisper 编码器模型,用于类似 SUPERB 关键词识别的任务。

forward

<来源>

( input_features: Optional = None head_mask: Optional = None encoder_outputs: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_features (torch.FloatTensor,形状为(batch_size, feature_size, sequence_length)) — 从原始语音波形中提取的浮点值 mel 特征。原始语音波形可以通过将.flac.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得,例如通过 soundfile 库(pip install soundfile)。要将数组准备成input_features,应使用 AutoFeatureExtractor 来提取 mel 特征,填充并转换为torch.FloatTensor类型的张量。请参见call()
  • head_mask (torch.Tensor,形状为(encoder_layers, encoder_attention_heads)optional) — 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — 元组包括(last_hidden_stateoptional: hidden_statesoptional: attentions) last_hidden_state的形状为(batch_size, sequence_length, hidden_size)optional)是编码器最后一层输出的隐藏状态序列。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种元素,取决于配置(WhisperConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。
  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组。
    注意力权重在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。

WhisperForAudioClassification 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> import torch
>>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification
>>> from datasets import load_dataset
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
>>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
>>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True)
>>> sample = next(iter(ds))
>>> inputs = feature_extractor(
...     sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> input_features = inputs.input_features
>>> with torch.no_grad():
...     logits = model(input_features).logits
>>> predicted_class_ids = torch.argmax(logits).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]
>>> predicted_label
'Afrikaans'

TensorFlowHide TensorFlow 内容

TFWhisperModel

class transformers.TFWhisperModel

< source >

( config: WhisperConfig **kwargs )

参数

  • config (WhisperConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 Whisper 模型输出原始隐藏状态,没有特定的头部。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有事项。

call

<来源>

( input_features: TFModelInputType | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)

参数

  • input_features(形状为(batch_size, feature_size, sequence_length)tf.Tensor)- 从原始语音波形中提取的 fbank 特征的浮点值。原始语音波形可以通过将.flac.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得,例如通过 soundfile 库(pip install soundfile)。要将数组准备成input_features,应使用 AutoFeatureExtractor 来提取 fbank 特征,填充并转换为tf.Tensor类型的张量。请参见call()
  • decoder_input_ids(形状为(batch_size, target_sequence_length)tf.Tensor可选)- 词汇表中解码器输入序列标记的索引。
    可以使用SpeechToTextTokenizer获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是 decoder input IDs?
    SpeechToText 使用eos_token_id作为decoder_input_ids生成的起始标记。如果使用past_key_values,可选择只输入最后的decoder_input_ids(参见past_key_values)。
  • decoder_attention_mask(形状为(batch_size, target_sequence_length)tf.Tensor可选)- 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。因果蒙版也将默认使用。
    如果要更改填充行为,请阅读modeling_whisper._prepare_decoder_attention_mask并根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
  • head_mask(形状为(encoder_layers, encoder_attention_heads)tf.Tensor可选)- 用于在编码器中使选定注意力模块的头部失效的蒙版。蒙版值选定在[0, 1]中:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • decoder_head_mask(形状为(decoder_layers, decoder_attention_heads)tf.Tensor可选)- 用于在解码器中使选定注意力模块的头部失效的蒙版。蒙版值选定在[0, 1]中:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)tf.Tensor可选)- 用于使交叉注意力模块的选定头部失效的蒙版。蒙版值选定在[0, 1]中:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • encoder_outputstuple(tuple(tf.Tensor)可选)- 元组包含(last_hidden_state可选hidden_states可选attentions) last_hidden_state的形状为(batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • past_key_valuestuple(tuple(tf.Tensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstuple(tf.Tensor)的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
    如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)的张量,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • decoder_inputs_embeds(形状为(batch_size, target_sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递decoder_input_ids。如果使用past_key_values,则可以选择仅输入最后的decoder_inputs_embeds(参见past_key_values)。如果您想要更多控制如何将decoder_input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_tf_outputs.TFSeq2SeqModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(WhisperConfig)和输入而异的各种元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor)— 模型解码器最后一层的隐藏状态序列。
    如果使用past_key_values,则仅输出形状为(batch_size, 1, hidden_size)序列的最后一个隐藏状态。
  • past_key_valuesList[tf.Tensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出,一个用于每层的输出)。
    解码器在每一层输出的隐藏状态加上初始嵌入输出。
  • decoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    编码器在每一层的隐藏状态加上初始嵌入输出。
  • encoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFWhisperModel 的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> import tensorflow as tf
>>> from transformers import TFWhisperModel, AutoFeatureExtractor
>>> from datasets import load_dataset
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]


Transformers 4.37 中文文档(八十一)(5)https://developer.aliyun.com/article/1563273

相关文章
|
4月前
|
自然语言处理 文字识别 PyTorch
Transformers 4.37 中文文档(八十九)(5)
Transformers 4.37 中文文档(八十九)
33 3
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(八十二)(2)
Transformers 4.37 中文文档(八十二)
37 2
|
4月前
|
存储 编解码 PyTorch
Transformers 4.37 中文文档(八十二)(3)
Transformers 4.37 中文文档(八十二)
32 2
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(八十二)(4)
Transformers 4.37 中文文档(八十二)
26 2
|
4月前
|
算法框架/工具 索引
Transformers 4.37 中文文档(八十二)(5)
Transformers 4.37 中文文档(八十二)
21 2
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(八十二)(1)
Transformers 4.37 中文文档(八十二)
28 2
|
4月前
|
自然语言处理 PyTorch 语音技术
Transformers 4.37 中文文档(八十一)(3)
Transformers 4.37 中文文档(八十一)
43 1
|
4月前
|
语音技术 算法框架/工具 异构计算
Transformers 4.37 中文文档(八十一)(5)
Transformers 4.37 中文文档(八十一)
43 1
|
4月前
|
存储 自然语言处理 TensorFlow
Transformers 4.37 中文文档(八十一)(1)
Transformers 4.37 中文文档(八十一)
35 1
|
4月前
|
JSON 自然语言处理 PyTorch
Transformers 4.37 中文文档(八十一)(2)
Transformers 4.37 中文文档(八十一)
58 1